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Xavier Leroy1 Michel Mauny2

Abstract

This report documents the Caml Light system, release 0.5. It contains an introduction to functional
programming in Caml Light; the reference manual for the Caml Light language; the user’s manual
for the Caml Light commands; and the documentation for the standard library.

Le système Caml Light, version 0.5
Documentation et manuel d’utilisation

Xavier Leroy Michel Mauny

Résumé

Ce rapport contient la documentation du système Caml Light, version 0.5. On y trouve une intro-
duction à la programmation fonctionnelle en Caml Light; le manuel de référence du langage Caml
Light; le manuel d’utilisation des commandes du système Caml Light; et enfin la documentation
de la bibliothèque standard.
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Foreword

This manual documents the release 0.5 of the Caml Light system. It is organized as follows.

• Part I, “Getting started”, explains how to install Caml Light on your machine.

• Part II, “Functional programming using Caml Light”, is a tutorial introduction to the Caml
Light language.

• Part III, “The Caml Light language reference manual”, is the reference description of the
core language.

• Part IV, “The Caml Light library”, describes the modules provided in the standard library.

• Part V, “Extensions to the Caml Light language”, describes some extensions to the core
language that are provided by the current implementation.

• Part VI, “The Caml Light commands”, documents the Caml Light compiler, toplevel system,
and programming utilities.

• Part VII, “Appendix”, contains a short bibliography, a listing of all identifiers defined in the
standard library, and an index of Caml Light keywords.

Conventions

The Caml Light system comes in several versions: for Unix machines, for Macintoshes, and for
PCs. The parts of this manual that are specific to one version are presented as shown below:

Unix: This is material specific to the Unix version.

Mac: This is material specific to the Macintosh version.

PC86: This is material specific to the 8086 (and 80286) PC version.

PC386: This is material specific to the 80386 PC version.

PC: This is material specific to the two PC versions.

9
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Chapter 1

Installation instructions

This chapter explains how to install Caml Light on your machine.

1.1 The Unix version

Requirements. Any machine that runs under one of the various flavors of the Unix operating
system, and that has a flat, non-segmented, 32-bit or 64-bit address space. 4M of RAM, 2M of free
disk space. The graphics package requires X11 release 4 or 5.

Installation. The Unix version is distributed in source format, as a compressed tar file named
cl5unix.tar.Z. To extract, move to the directory where you want the source files to reside, transfer
cl5unix.tar.Z to that directory, and execute

zcat cl5unix.tar.Z | tar xBf -

This extracts the source files in the current directory. The file INSTALL contains complete instruc-
tions on how to configure, compile and install Caml Light. Read it and follow the instructions.

Troubleshooting. See the file INSTALL.

1.2 The Macintosh version

Requirements. Any Macintosh with at least 1M of RAM (2M is recommended), running System
6 or 7. About 850K of free space on the disk. The parts of the Caml Light system that support
batch compilation currently require the Macintosh Programmer’s Workshop (MPW) version 3.2.
MPW is Apple’s development environment, and it is distributed by APDA, Apple’s Programmers
and Developers Association. See the file READ ME in the distribution for APDA’s address.

Installation. Create the folder where the Caml Light files will reside. Double-click on the file
cl5macbin.sea from the distribution disk. This displays a file dialog box. Open the folder where
the Caml Light files will reside, and click on the Extract button. This will re-create all files from
the distribution in the Caml Light folder.

To test the installation, double-click on the application Caml Light. The “Caml Light output”
window should display something like

13
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> Caml Light version 0.5

#

In the “Caml Light input” window, enter 1+2;; and press the Return key. The “Caml Light
output” window should display:

> Caml Light version 0.5

#1+2;;

- : int = 3

#

Select “Quit” from the “File” menu to return to the Finder.

If you have MPW, you can install the batch compilation tools as follows. The tools and scripts
from the tools folder must reside in a place where MPW will find them as commands. There
are two ways to achieve this result: either copy the files in the tools folder to the Tools or the
Scripts folder in your MPW folder; or keep the files in the tools folder and add the following line
to your UserStartup file (assuming Caml Light resides in folder Caml Light on the disk named
My HD):

Set Commands "{Commands},My HD:Caml Light:tools:"

In either case, you now have to edit the camlc script, and replace the string

Macintosh HD:Caml Light:lib:

(in the first line) with the actual pathname of the lib folder. For example, if you put Caml Light
in folder Caml Light on the disk named My HD, the first line of camlc should read:

Set stdlib "My HD:Caml Light:lib:"

Troubleshooting. Here is one commonly encountered problem.

Cannot find file stream.zi

(Displayed in the “Caml Light output” window, with an alert box telling you that Caml
Light has terminated abnormally.) This is an installation error. The folder named lib in the
distribution must always be in the same folder as the Caml Light application. It’s OK to
move the application to another folder; but remember to move the lib directory to the same
folder. (To return to the Finder, first select “Quit” from the “File” menu.)

1.3 The PC versions

Two versions are distributed for the PC. The first one, dubbed “8086 PC” here, runs on all PCs,
whatever their processor is (8088, 8086, 80286, 80386 DX or SX, 80486 DX or SX, and so on).
The second one, dubbed “80386 PC”, runs in 32-bit protected mode, and is therefore faster and
takes advantage of memory above the standard 640K, but runs only on PCs with 80386 or 80486
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processors (DX or SX, it does not matter). The distribution diskette for the PC contains the
binaries for both versions, in the two zip archive files cl5pc86.zip and cl5pc386.zip.

In the following, we assume that the distribution diskette resides in drive A:, and that the hard
disk on which you are installing Caml Light is drive C:. If this is not the case, replace A: and C:

by the appropriate drives.

1.3.1 The 8086 PC version

Requirements. A PC running MS-DOS version 3.1 or later. 640K of RAM. About 800K of free
space on the disk. The graphics primitives require a CGA, EGA, or VGA video card.

Installation. Create a directory on the hard disk where Caml Light will reside. In the following,
we assume that this directory is named C:\caml86. If you choose a different directory, replace
C:\caml86 by the appropriate absolute path name. Then, execute the following commands:

cd C:\caml86

A:pkunzip -d A:cl5pc86

A:pkunzip -d A:cl5exple

(Be careful not to omit the -d option to pkunzip.) This extracts all files in the C:\caml86 directory.
Then, edit the C:\autoexec.bat file, in order to:

• add C:\caml86\bin to the PATH variable; that is, transform the line that reads

SET PATH=C:\dos;...

into

SET PATH=C:\dos;...;C:\caml86\bin

• insert the following line

SET CAMLLIB=C:\caml86\lib

Then, save the autoexec.bat file and restart the machine. To test the installation, execute:

camlc -v

The camlc command should print something like:

The Caml Light system for the 8086 PC, version 0.5

(standard library from C:\caml86\lib)

The Caml Light runtime system, version 0.5

The Caml Light compiler, version 0.5

The Caml Light linker, version 0.5

Then, execute:

caml
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The caml command should print something like:

> Caml Light version 0.5

#

In response to the # prompt, type:

quit();;

This should get you back to the DOS command interpreter.

Troubleshooting. Here are some commonly encountered problems.

Cannot find the bytecode file or camlrun.exe: No such file

The installation has been performed incorrectly. Double-check the autoexec.bat file for
errors in setting the PATH and CAMLLIB variables.

Out of memory

Caml Light barely fits into the ridiculously small memory space provided by MS-DOS. Hence,
you must make sure that as much of the standard 640K of RAM as possible are free before
running Caml Light. As a rule of thumb, 500K of available RAM is the bare minimum; 600K
is still far from sufficient. To free memory, remove as many device drivers (by suppressing
lines in the config.sys file) and TSR programs (by suppressing lines in the autoexec.bat

file) as possible, and restart the machine. Or, try to load your drivers and TSRs outside of
the standard 640K zone, with the help of memory managers such as QEMM or the tools in
MS-DOS 5. For more details, consult your favorite PC magazine, or one of the numerous
books on MS-DOS.

1.3.2 The 80386 PC version

Requirements. A PC equipped with a 80386 or 80486 processor, running MS-DOS version 3.3 or
later. 2M of RAM. About 1.2M of free space on the disk. The graphics primitives require a VGA
or SuperVGA video card.

Installation. Create a directory on the hard disk where Caml Light will reside. In the following,
we assume that this directory is named C:\caml386. If you choose a different directory, replace
C:\caml386 by the appropriate absolute path name. Then, execute the following commands:

cd C:\caml386

A:pkunzip -d A:cl5pc386

A:pkunzip -d A:cl5exple

(Be careful not to omit the -d option to pkunzip.) This extracts all files in the C:\caml386

directory.

Select or create a directory where Caml Light will put its temporary files. Many machines
already have a C:\tmp directory for that purpose. If it does not exist, create it.

For the remainder of the configuration process, you will have to determine two things:
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• does your machine contain floating-point hardware — that is, a 387 coprocessor, a 486DX
processor, or a 487SX (co-)processor? (If you really don’t know, assume no floating-point
hardware.)

• what kind of SuperVGA card do you have? Caml Light has graphics primitives that work on
any VGA card in 320x200 pixels, 256 colors, but it can take advantage of the extra possibilities
of various SuperVGA cards to work at higher resolution. To do so, you must determine which
chipset is used in your SuperVGA card. Re-read the documentation for the card, then look at
the files with extension .GRD (the graphics drivers) in directory C:\caml386\dev, and find one
whose name seems to match the name of the chipset. If you can’t determine which graphics
driver to use, don’t worry: you’ll stick with the default VGA graphics, that’s all.

Now, edit the C:\autoexec.bat file, in order to:

• Add C:\caml386\bin to the PATH variable; that is, transform the line that reads

SET PATH=C:\dos;...

into

SET PATH=C:\dos;...;C:\caml386\bin

• Insert the following lines

SET CAMLLIB=C:\caml386\lib

SET GO32TMP=C:\tmp

• If your machine has floating-point hardware, insert the following line:

SET GO32=driver C:\caml386\dev\graph.grd gw 640 gh 480

where graph.grd stands for the name of the graphics driver for your SuperVGA card, as
determined above. The 640 and 480 specify the default graphics resolution to use; you can
put 800 and 600, or 1024 and 768 instead, depending on your taste and the capabilities of
your card.

If you were unable to determine the correct graphics driver, do not insert anything, leaving
the GO32 variable undefined.

• If your machine has no floating-point hardware, insert the following line:

SET GO32=emu C:\caml386\dev\emu387 driver C:\caml386\dev\graph.grd gw 640 gh 480

where graph.grd stands for the name of the graphics driver for your SuperVGA card, as
determined above. As explained in the previous item, you can choose another default graphics
resolution instead of 640 and 480.

If you were unable to determine the correct graphics driver, insert the following line instead:
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SET GO32=emu C:\caml386\dev\emu387

Then, save the autoexec.bat file and restart the machine. To test the installation, execute:

camlc -v

The camlc command should print something like:

The Caml Light system for the 80386 PC, version 0.5

(standard library from C:\caml386\lib)

The Caml Light runtime system, version 0.5

The Caml Light compiler, version 0.5

The Caml Light linker, version 0.5

Then, execute:

caml

The caml command should print something like:

> Caml Light version 0.5

#

In response to the # prompt, type:

quit();;

This should get you back to the DOS command interpreter.

Troubleshooting. Here are some commonly encountered problems.

Cannot find the bytecode file or camlrun.exe: No such file

The installation has been performed incorrectly. Double-check the autoexec.bat file for
errors in setting the PATH and CAMLLIB variables.

CPU must be a 386 to run this program

Self-explanatory. You’ll have to content yourself with the 8086 PC version.

CPU must be in REAL mode (not V86 mode) to run this program

Ah. That’s a tricky one. A number of utility programs switch the 80386 processor to a
particular mode, called “Virtual 86” or “V86” mode, that prevents 32-bit protected-mode
applications like the 80386 PC version of Caml Light from starting. These programs include:

• environments such as Windows 3

• device drivers that provide memory management services

• device drivers that provide enhanced debugging possibilities, such as tdh386.sys from
Turbo Debugger.
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The 80386 PC version cannot start when any of these programs is active. To solve the
problem, don’t start Windows and remove the guilty device drivers from your config.sys

file.

On the other hand, the 80386 PC version knows how to cohabit with VCPI-compliant en-
vironments and memory managers. These include the QEMM386 and 386MAX memory
managers, and the Desqview environment. Also, emm386.exe from the MS-DOS 5.0 distribu-
tion works fine, provided you don’t give it the NOEMS option. If you run the 80386 PC under
a VCPI-compliant memory manager, configure the memory manager so that it allocates at
least 1M of EMS, and preferably 2M or more.

Caml Light runs slowly and does a lot of disk accesses
When Caml Light cannot allocate the RAM it requires, it starts paging to a disk file, which
considerably slows down execution. To avoid this, make sure that at least 1M or memory is
available to Caml Light, and preferably 2M. Caml Light uses XMS memory if you are not
running under a VCPI-compliant memory manager, and EMS memory if you are running
under a VCPI-compliant memory manager. In the latter case, make sure to configure the
memory manager so that it can allocate enough EMS.
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Chapter 2

Introduction

This part is a tutorial introduction to functional programming, and, more precisely, to the usage
of Caml Light. It has been used to teach Caml Light1 in different universities and is intended for
beginners. It contains numerous examples and exercises, and absolute beginners should read it
while sitting in front of a Caml Light toplevel loop, testing examples and variations by themselves.

After generalities about functional programming, some features specific to Caml Light are
described. ML type synthesis and a simple execution model are presented in a complete example
of prototyping a subset of ML.

Part A (chapters 3–7) may be skipped by users familiar with ML. Users with experience in
functional programming, but unfamiliar with the ML dialects may skip the very first chapters and
start at chapter 7, learning the Caml Light syntax from the examples. Part A starts with some
intuition about functions and types and gives an overview of ML and other functional languages
(chapter 3). Chapter 4 outlines the interaction with the Caml Light toplevel loop and its basic
objects. Basic types and some of their associated primitives are presented in chapter 5. Lists
(chapter 6) and user-defined types (chapter 7) are structured data allowing for the representation
of complex objects and their easy creation and destructuration.

While concepts presented in part A are common (under one form or another) to many functional
languages, part B (chapters 8–12) is dedicated to features specific to Caml Light: mutable data
structures (chapter 8), exception handling (chapter 9), input/output (chapter 10) and streams
and parsers (chapter 11) show a more imperative side of the language. Standalone programs and
separate compilation (chapter 12) allow for modular programming and the creation of standalone
applications. Concise examples of Caml Light features are to be found in this part.

Part C (chapters 13–17) is meant for already experienced Caml Light users willing to know more
about how the Caml Light compiler synthesizes the types of expression and how compilation and
evaluation proceeds. Some knowledge about first-order unification is assumed. The presentation
is rather informal, and is sometimes terse (specially in the chapter about type synthesis). We
prototype a small and simple functional language (called ASL): we give the complete prototype
implementation, from the ASL parser to the symbolic execution of code. Lexing and parsing of ASL
programs are presented in chapter 13, providing realistic usages of streams and parsers. Chapter
14 presents an untyped call-by-value semantics of ASL programs through the definition of an ASL
interpreter. The encoding of recursion in untyped ASL is presented in chapter 15, showing the

1The “Caml Strong” version of these notes is available as an INRIA technical report [22].
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expressive power of the language. The type synthesis of functional programs is demonstrated in
chapter 16, using destructive unification (on first-order terms representing types) as a central tool.
Chapter 17 introduces the Categorical Abstract Machine: a simple execution model for call-by-
value functional programs. Although the Caml Light execution model is different from the one
presented here, an intuition about the simple compilation of functional languages can be found in
this chapter.

Warning: The programs and remarks (especially contained in parts B and C) might not be
valid in Caml Light versions different from 0.5.
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Chapter 3

Functional languages

Programming languages are said to be functional when the basic way of structuring programs is
the notion of function and their essential control structure is function application. For example,
the Lisp language [20], and more precisely its modern successor Scheme [29, 1], has been called
functional because it possesses these two properties.

However, we want the programming notion of function to be as close as possible to the usual
mathematical notion of function. In mathematics, functions are “first-class” objects: they can be
arbitrarily manipulated. For example, they can be composed, and the composition function is itself
a function.

In mathematics, one would present the successor function in the following way:

successor : IN −→ IN
n 7−→ n+ 1

The functional composition could be presented as:

◦ : (A⇒ B)× (C ⇒ A) −→ (C ⇒ B)
(f, g) 7−→ (x 7−→ f (g x))

where (A⇒ B) denotes the space of functions from A to B.

We remark here the importance of:

1. the notion of type; a mathematical function always possesses a domain and a codomain. They
will correspond to the programming notion of type.

2. lexical binding: when we wrote the mathematical definition of successor, we have assumed
that the addition function + had been previously defined, mapping a pair of natural numbers
to a natural number; the meaning of the successor function is defined using the meaning of
the addition: whatever + denotes in the future, this successor function will remain the same.

3. the notion of functional abstraction, allowing to express the behavior of f ◦ g as (x 7−→
f (g x)), i.e. the function which, when given some x, returns f (g x).

ML dialects (cf. below) respect these notions. But they also allow non-functional programming
styles, and, in this sense, they are functional but not purely functional.

27
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3.1 History of functional languages

Some historical points:

• 1930: Alonzo Church developed the λ-calculus [6] as an attempt to provide a basis for math-
ematics. The λ-calculus is a formal theory for functionality. The three basic constructs of
the λ-calculus are:

– variable names (e.g. x, y,. . . );

– application (MN if M and M are terms);

– functional abstraction (λx.M).

Terms of the λ-calculus represent functions. The pure λ-calculus has been proved inconsis-
tent as a logical theory. Some type systems have been added to it in order to remedy this
inconsistency.

• 1958: Mac Carthy invented Lisp [20] whose programs have some similarities with terms of
the λ-calculus. Lisp dialects have been recently evolving in order to be closer to modern
functional languages (Scheme), but they still do not possess a type system.

• 1965: P. Landin proposed the ISWIM [18] language (for “If You See What I Mean”), which
is the precursor of languages of the ML family.

• 1978: J. Backus introduced FP: a language of combinators [3] and a framework in which it is
possible to reason about programs. The main particularity of FP programs is that they have
no variable names.

• 1978: R. Milner proposes a language called ML [11], intended to be the metalanguage of the
LCF proof assistant (i.e. the language used to program the search of proofs). This language
is inspired by ISWIM (close to λ-calculus) and possesses an original type system.

• 1985: D. Turner proposed the Miranda [34] programming language, which uses Milner’s type
system but where programs are submitted to lazy evaluation.

Currently, the two main families of functional languages are the ML and the Miranda families.

3.2 The ML family

ML languages are based on a sugared1 version of λ-calculus. Their evaluation regime is call-by-
value (i.e. the argument is evaluated before being passed to a function), and they use Milner’s type
system.

The LCF proof system appeared in 1972 at Stanford (Stanford LCF). It has been further
developed at Cambridge (Cambridge LCF) where the ML language was added to it.

From 1981 to 1986, a version of ML and its compiler was developed in a collaboration between
INRIA and Cambridge by G. Cousineau, G. Huet and L. Paulson.

1i.e. with a more user-friendly syntax.
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In 1981, L. Cardelli implemented a version of ML whose compiler generated native machine
code.

In 1984, a committee of researchers from the universities of Edinburgh and Cambridge, Bell
Laboratories and INRIA, headed by R. Milner worked on a new extended language called Standard
ML [26]. This core language was completed by a module facility designed by D. MacQueen [21].

Since 1984, the Caml language has been under design in a collaboration between INRIA and
LIENS2). Its first release appeared in 1987. The main implementors of Caml were Ascánder Suárez,
Pierre Weis and Michel Mauny.

In 1989 appeared Standard ML of New-Jersey, developed by Andrew Appel (Princeton Univer-
sity) and David MacQueen (Bell Laboratories).

Caml Light is a smaller, more portable implementation of the core Caml language, developed
by Xavier Leroy since 1990.

3.3 The Miranda family

All languages in this family use lazy evaluation (i.e. the argument of a function is evaluated if and
when the function needs its value—arguments are passed unevaluated to functions). They also use
Milner’s type system.

Languages belonging to the Miranda family find their origin in the SASL language [32] (1976)
developed by D. Turner. SASL and its successors (KRC [33] 1981, Miranda [34] 1985 and Haskell
[15] 1990) use sets of mutually recursive equations as programs. These equations are written in a
script (collection of declarations) and the user may evaluate expressions using values defined in this
script. LML (Lazy ML) has been developed in Göteborg (Sweeden); its syntax is close to ML’s
syntax and it uses a fast execution model: the G-machine [16].

2Laboratoire d’Informatique de l’Ecole Normale Supérieure, 45 Rue d’Ulm, 75005 Paris
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Chapter 4

Basic concepts

We examine in this chapter some fundamental concepts which we will use and study in the following
chapters. Some of them are specific to the interface with the Caml language (toplevel, global
definitions) while others are applicable to any functional language.

4.1 Toplevel loop

The first contact with Caml is through its interactive aspect1. When running Caml on a computer,
we enter a toplevel loop where Caml waits for input from the user, and then gives a response to
what has been entered.

The beginning of a Caml Light session looks like this (assuming $ is the shell prompt on the
host machine):

$camllight

> Caml Light version 0.5

#

On the PC version, the command is called caml.

The “#” character is Caml’s prompt. When this character appears at the beginning of a line in
an actual Caml Light session, the toplevel loop is waiting for a new toplevel phrase to be entered.

Throughout this document, the phrases starting by the # character represent legal input to
Caml. Since this document has been pre-processed by Caml Light and these lines have been
effectively given as input to a Caml Light process, the reader may reproduce by him/herself the
session contained in each chapter (each chapter of the first two parts contains a different session, the
third part is a single session). Lines starting with the “>” character are Caml Light error messages.
Lines starting by another character are either Caml responses or (possibly) illegal input. The input
is printed in typewriter font (like this), and output is written using slanted typewriter font (like
that).

Important: Of course, when developing non-trivial programs, it is preferable to edit programs
in files and then to include the files in the toplevel, instead of entering the programs directly.

1Caml Light implementations also possess a batch compiler usable to compile files and produce standalone appli-
cations; see chapters 12 and and 25.
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Furthermore, when debugging, it is very useful to trace some functions, to see with what arguments
they are called, and what result they return. The description of these Caml Light commands is
given in section 26.2.

4.2 Evaluation: from expressions to values

Let us enter an arithmetic expression and see what is Caml’s response:

#1+2;;

- : int = 3

The expression “1+2” has been entered, followed by “;;” which represents the end of the current
toplevel phrase. When encountering “;;”, Caml enters the type-checking (more precisely type
synthesis) phase, and prints the inferred type for the expression. Then, it compiles code for the
expression, executes it and, finally, prints the result.

In the previous example, the result of evaluation is printed as “3” and the type is “int”: the
type of integers.

The process of evaluation of a Caml expression can be seen as transforming this expression
until no further transformation is allowed. These transformations must preserve semantics. For
example, if the expression “1+2” has the mathematical object 3 as semantics, then the result “3”
must have the same semantics. The different phases of the Caml evaluation process are:

• parsing (checking the syntactic legality of input);

• type synthesis;

• compiling;

• loading;

• executing;

• printing the result of execution.

Let us consider another example: the application of the successor function to 2+3. The expression
(function x -> x+1) should be read as “the function that, given x, returns x+1”. The juxtapo-
sition of this expression to (2+3) is function application.

#(function x -> x+1) (2+3);;

- : int = 6

There are several ways to reduce that value before obtaining the result 6. For example, we could
proceed this way:
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or that way:

The transformations used by Caml during evaluation cannot be described in this chapter, since
they imply knowledge about compilation of Caml programs and machine representation of Caml
values. However, since the basic control structure of Caml is function application, it is quite easy
to give an idea of the transformations involved in the Caml evaluation process by using the kind of
rewriting we used in the last example. The evaluation of the (well-typed) application e1(e2), where
e1 and e2 denote arbitrary expressions, consists in the following steps:

• Evaluate e2, obtaining its value v.

• Evaluate e1 until it becomes a functional value. Because of the well-typing hypothesis, e1
must represent a function from some type t1 to some t2, and the type of v is t1. We will write
(function x -> e) for the result of the evaluation of e1. It denotes the mathematical object
usually written as:

f : t1 → t2
x 7→ e (where, of course, e may depend on x)

N.B.: We do not evaluate e before we know the value of x.

• Evaluate e where v has been substituted for all occurrences of x. We then get the final value
of the original expression. The result is of type t2.

In the previous example, we evaluate:

• 2+3 to 5;

• (function x -> x+1) to itself (it is already a function body);

• x+1 where 5 is substituted for x, i.e. evaluate 5+1, getting 6 as result.

It should be noticed that Caml uses call-by-value: arguments are evaluated before being passed to
functions. The relative evaluation order of the functional expression and of the argument expression
is implementation-dependent, and should not be relied upon. The Caml Light implementation
evaluates arguments before functions (right-to-left evaluation), as shown above; the original Caml
implementation evaluates functions before arguments (left-to-right evaluation).
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4.3 Types

Types and their checking/synthesis are crucial to functional programming: they provide an indica-
tion about the correctness of programs.

The universe of Caml values is partitioned into types. A type represents a collection of values.
For example, int is the type of integer numbers, and float is the type of floating-point numbers.
Truth values belong to the bool type. Character strings belong to the string type. Types are
divided into two classes:

• Basic types (int, bool, string, . . . ).

• Compound types such as functional types. For example, the type of functions from integers
to integers is denoted by int -> int. The type of functions from boolean values to character
strings is written bool -> string. The type of pairs whose first component is an integer
and whose second component is a boolean value is written int * bool.

In fact, any combination of the types above (and even more!) is possible. This could be written as:

BasicType ::= int

| bool

| string

Type ::= BasicType
| Type -> Type
| Type * Type

Once a Caml toplevel phrase has been entered in the computer, the Caml process starts analyzing
it. First of all, it performs syntax analysis, which consists in checking whether the phrase belongs
to the language or not. For example, here is a syntax error2 (a parenthesis is missing):

#(function x -> x+1 (2+3);;

> Toplevel input:

>(function x -> x+1 (2+3);;

> ^^

> Syntax error.

The carets “^^^” underline the location where the error was detected.

The second analysis performed is type analysis: the system attempts to assign a type to each
subexpression of the phrase, and to synthesize the type of the whole phrase. If type analysis fails
(i.e. if the system is unable to assign a sensible type to the phrase), then a type error is reported
and Caml waits for another input, rejecting the current phrase. Here is a type error (cannot add
a number to a boolean):

#(function x -> x+1) (2+true);;

> Toplevel input:

>(function x -> x+1) (2+true);;

2Actually, lexical analysis takes place before syntax analysis and lexical errors may occur, detecting for instance
badly formed character constants.
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> ^^^^

> Expression of type bool

> cannot be used with type int

The rejection of ill-typed phrases is called strong typing. Compilers for weakly typed languages (C,
for example) would instead issue a warning message and continue their work at the risk of getting
a “Bus error” or “Illegal instruction” message at run-time.

Once a sensible type has been deduced for the expression, then the evaluation process (compi-
lation, loading and execution) may begin.

Strong typing enforces writing clear and well-structured programs. Moreover, it adds security
and increases the speed of program development, since most typos and many conceptual errors are
trapped and signaled by the type analysis. Finally, well-typed programs do not need dynamic type
tests (the addition function does not need to test whether or not its arguments are numbers), hence
static type analysis allows for more efficient machine code.

4.4 Functions

The most important kind of values in functional programming are functional values. Mathemati-
cally, a function f of type A → B is a rule of correspondence which associates with each element
of type A a unique member of type B.

If x denotes an element of A, then we will write f(x) for the application of f to x. Parentheses
are often useless (they are used only for grouping subexpressions), so we could also write (f(x)) as
well as (f((x))) or simply f x. The value of f x is the unique element of B associated with x by
the rule of correspondence for f .

The notation f(x) is the one normally employed in mathematics to denote functional appli-
cation. However, we shall be careful not to confuse a function with its application. We say “the
function f with formal parameter x”, meaning that f has been defined by:

f : x 7→ e

or, in Caml, that the body of f is something like (function x -> ...). Functions are values
as other values. In particular, functions may be passed as arguments to other functions, and/or
returned as result. For example, we could write:

#function f -> (function x -> (f(x+1) - 1));;

- : (int -> int) -> int -> int = <fun>

That function takes as parameter a function (let us call it f) and returns another function which,
when given an argument (let us call it x), will return the predecessor of the value of the application
f(x+1).

The type of that function should be read as: (int -> int) -> (int -> int).

4.5 Definitions

It is important to give names to values. We have already seen some named values: we called them
formal parameters. In the expression (function x -> x+1), the name x is a formal parameter.
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Its name is irrelevant: changing it into another one does not change the meaning of the expression.
We could have written that function (function y -> y+1).

If now we apply this function to, say, 1+2, we will evaluate the expression y+1 where y is the
value of 1+2. Naming y the value of 1+2 in y+1 is written as:

#let y=1+2 in y+1;;

- : int = 4

This expression is a legal Caml phrase, and the let construct is indeed widely used in Caml
programs.

The let construct introduces local bindings of values to identifiers. They are local because the
scope of y is restricted to the expression (y+1). The identifier y kept its previous binding (if any)
after the evaluation of the “let . . . in . . . ” construct. We can check that y has not been globally
defined by trying to evaluate it:

#y;;

> Toplevel input:

>y;;

>^

> Variable y is unbound.

Local bindings using let also introduce sharing of (possibly time-consuming) evaluations. When
evaluating “let x=e1 in e2”, e1 gets evaluated only once. All occurrences of x in e2 access the
value of e1 which has been computed once. For example, the computation of:

let big = sum_of_prime_factors 35461243

in big+(2+big)-(4*(big+1));;

will be less expensive than:

(sum_of_prime_factors 35461243)

+ (2 + (sum_of_prime_factors 35461243))

- (4 * (sum_of_prime_factors 35461243 + 1));;

The let construct also has a global form for toplevel declarations, as in:

#let successor = function x -> x+1;;

successor : int -> int = <fun>

#let square = function x -> x*x;;

square : int -> int = <fun>

When a value has been declared at toplevel, it is of course available during the rest of the session.

#square(successor 3);;

- : int = 16

#square;;

- : int -> int = <fun>

When declaring a functional value, there are some alternative syntaxes available. For example
we could have declared the square function by:
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#let square x = x*x;;

square : int -> int = <fun>

or (closer to the mathematical notation) by:

#let square (x) = x*x;;

square : int -> int = <fun>

All these definitions are equivalent.

4.6 Partial applications

A partial application is the application of a function to some but not all of its arguments. Consider,
for example, the function f defined by:

#let f x = function y -> 2*x+y;;

f : int -> int -> int = <fun>

Now, the expression f(3) denotes the function which when given an argument y returns the value
of 2*3+y. The application f(x) is called a partial application, since f waits for two successive
arguments, and is applied to only one. The value of f(x) is still a function.

We may thus define an addition function by:

#let addition x = function y -> x+y;;

addition : int -> int -> int = <fun>

This can also be written:

#let addition x y = x+y;;

addition : int -> int -> int = <fun>

We can then define the successor function by:

#let successor = addition 1;;

successor : int -> int = <fun>

Now, we may use our successor function:

#successor (successor 1);;

- : int = 3

Exercises

4.1 Give examples of functions with the following types:

1. (int -> int) -> int

2. int -> (int -> int)

3. (int -> int) -> (int -> int)
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4.2 We have seen that the names of formal parameters are meaningless. It is then possible to
rename x by y in (function x -> x+x). What should we do in order to rename x in y in

(function x -> (function y -> x+y))

Hint: rename y by z first. Question: why?

4.3 Evaluate the following expressions (rewrite them until no longer possible):

let x=1+2 in ((function y -> y+x) x);;

let x=1+2 in ((function x -> x+x) x);;

let f1 = function f2 -> (function x -> f2 x)

in let g = function x -> x+1

in f1 g 2;;
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Basic types

We examine in this chapter the Caml basic types.

5.1 Numbers

Caml Light provides two numeric types: integers (type int) and floating-point numbers (type
float). Integers are limited to the range −230 . . . 230 − 1. Integer arithmetic is taken modulo 231;
that is, an integer operation that overflows does not raise an error, but the result simply wraps
around. Predefined operations (functions) on integers include:

+ addition
- subtraction and unary minus
* multiplication
/ division

mod modulo

Some examples of expressions:

#3 * 4 + 2;;

- : int = 14

#3 * (4 + 2);;

- : int = 18

#3 - 7 - 2;;

- : int = -6

There are precedence rules that make * bind tighter than +, and so on. In doubt, write extra
parentheses.

So far, we have not seen the type of these arithmetic operations. They all expect two integer
arguments; so, they are functions taking one integer and returning a function from integers to
integers. The (functional) value of such infix identifiers may be obtained by taking their prefix
version.

#prefix +;;

- : int -> int -> int = <fun>
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#prefix *;;

- : int -> int -> int = <fun>

#prefix mod;;

- : int -> int -> int = <fun>

As shown by their types, the infix operators +, *, . . . , do not work on floating-point values. A
separate set of floating-point arithmetic operations is provided:

+. addition
-. subtraction and unary minus
*. multiplication
/. division

sqrt square root
exp, log exponentiation and logarithm

sin, cos,. . . usual trigonometric operations

We have two conversion functions to go back and forth between integers and floating-point
numbers: int_of_float and float_of_int.

#1 + 2.3;;

> Toplevel input:

>1 + 2.3;;

> ^^^

> Expression of type float

> cannot be used with type int

#float_of_int 1 +. 2.3;;

- : float = 3.3

Let us now give some examples of numerical functions. We start by defining some very simple
functions on numbers:

#let square x = x *. x;;

square : float -> float = <fun>

#square 2.0;;

- : float = 4

#square (2.0 /. 3.0);;

- : float = 0.444444444444

#let sum_of_squares (x,y) = square(x) +. square(y);;

sum_of_squares : float * float -> float = <fun>

#let half_pi = 3.14159 /. 2.0

#in sum_of_squares(cos(half_pi), sin(half_pi));;

- : float = 1
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We now develop a classical example: the computation of the root of a function by Newton’s
method. Newton’s method can be stated as follows: if y is an approximation to a root of a function
f , then:

y −
f(y)

f ′(y)

is a better approximation, where f ′(y) is the derivative of f evaluated at y. For example, with
f(x) = x2 − a, we have f ′(x) = 2x, and therefore:

y −
f(y)

f ′(y)
= y −

y2 − a

2y
=

y + a
y

2

We can define a function deriv for approximating the derivative of a function at a given point
by:

#let deriv f x dx = (f(x+.dx) -. f(x)) /. dx;;

deriv : (float -> float) -> float -> float -> float = <fun>

Provided dx is sufficiently small, this gives a reasonable estimate of the derivative of f at x.
The following function returns the absolute value of its floating point number argument. It uses

the “if . . . then . . . else” conditional construct.

#let abs x = if x >. 0.0 then x else -. x;;

abs : float -> float = <fun>

The main function, given below, uses three local functions. The first one, until, is an example
of a recursive function: it calls itself in its body, and is defined using a let rec construct (rec
shows that the definition is recursive). It takes three arguments: a predicate p on floats, a function
change from floats to floats, and a float x. If p(x) is false, then until is called with last argument
change(x), otherwise, x is the result of the whole call. We will study recursive functions more
closely later. The two other auxiliary functions, satisfied and improve, take a float as argument
and deliver respectively a boolean value and a float. The function satisfied asks wether the image
of its argument by f is smaller than epsilon or not, thus testing wether y is close enough to a root
of f. The function improve computes the next approximation using the formula given below. The
three local functions are defined using a cascade of let constructs. The whole function is:

#let newton f epsilon =

# let rec until p change x =

# if p(x) then x

# else until p change (change(x)) in

# let satisfied y = abs(f y) <. epsilon in

# let improve y = y -. (f(y) /. (deriv f y epsilon))

#in until satisfied improve;;

newton : (float -> float) -> float -> float -> float = <fun>

Some examples of equation solving:

#let square_root x epsilon =

# newton (function y -> y*.y -. x) epsilon x
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#and cubic_root x epsilon =

# newton (function y -> y*.y*.y -. x) epsilon x;;

square_root : float -> float -> float = <fun>

cubic_root : float -> float -> float = <fun>

#square_root 2.0 1e-5;;

- : float = 1.41421569553

#cubic_root 8.0 1e-5;;

- : float = 2.00000000131

#2.0 *. (newton cos 1e-5 1.5);;

- : float = 3.14159265359

5.2 Boolean values

The presence of the conditional construct implies the presence of boolean values. The type bool is
composed of two values true and false.

#true;;

- : bool = true

#false;;

- : bool = false

The functions with results of type bool are often called predicates. Many predicates are predefined
in Caml. Here are some of them:

#prefix <;;

- : int -> int -> bool = <fun>

#1 < 2;;

- : bool = true

#prefix <.;;

- : float -> float -> bool = <fun>

#3.14159 <. 2.718;;

- : bool = false

There exist also <=, >, >=, and similarly <=., >., >=..

5.2.1 Equality

Equality has a special status in functional languages because of functional values. It is easy to test
equality of values of base types (integers, floating-point numbers, booleans, . . . ):

#1 = 2;;

- : bool = false

#false = (1>2);;

- : bool = true
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But it is impossible, in the general case, to decide the equality of functional values. Hence, equality
stops on a run-time error when it encounters functional values.

#(fun x -> x) = (fun x -> x);;

Uncaught exception: Invalid_argument "equal: functional value"

Since equality may be used on values of any type, what is its type? Equality takes two arguments
of the same type (whatever type it is) and returns a boolean value. The type of equality is a
polymorphic type, i.e. may take several possible forms. Indeed, when testing equality of two
numbers, then its type is int -> int -> bool, and when testing equality of strings, its type is
string -> string -> bool.

#prefix =;;

- : ’a -> ’a -> bool = <fun>

The type of equality uses type variables, written ’a, ‘b, etc. Any type can be substituted to type
variables in order to produces specific instances of types. For example, substituting int for ’a

above produces int -> int -> bool, which is the type of the equality function used on integer
values.

#1=2;;

- : bool = false

#(1,2) = (2,1);;

- : bool = false

#1 = (1,2);;

> Toplevel input:

>1 = (1,2);;

> ^^^

> Expression of type ’a * ’b

> cannot be used with type int

5.2.2 Conditional

Conditional expressions are of the form “if etest then e1 else e2”, where etest is an expression of
type bool and e1, e2 are expressions possessing the same type. As an example, the logical negation
could be written:

#let negate a = if a then false else true;;

negate : bool -> bool = <fun>

#negate (1=2);;

- : bool = true
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5.2.3 Logical operators

The classical logical operators are available in Caml. Disjunction and conjunction are respectively
written or and &:

#true or false;;

- : bool = true

#(1<2) & (2>1);;

- : bool = true

The operators & and or are not functions. They should not be seen as regular functions, since they
evaluate their second argument only if it is needed. For example, the or operator evaluates its
second operand only if the first one evaluates to false. The behavior of these operators may be
described as follows:

e1 or e2 is equivalent to if e1 then true else e2
e1 & e2 is equivalent to if e1 then e2 else false

Negation is predefined:

#not true;;

- : bool = false

The not identifier receives a special treatment from the parser: the application “not f x” is
recognized as “not (f x)” while “f g x” is identical to “(f g) x”. This special treatment explains
why the functional value associated to not can be obtained only using the prefix keyword:

#prefix not;;

- : bool -> bool = <fun>

5.3 Strings and characters

String constants (type string) are written between " characters (double-quotes). Single-character
constants (type char) are written between ‘ characters (backquotes). The most used string oper-
ation is string concatenation, denoted by the ^ character.

#"Hello" ^ " World!";;

- : string = "Hello World!"

#prefix ^;;

- : string -> string -> string = <fun>

Characters are ASCII characters:

#‘a‘;;

- : char = ‘a‘

#‘\065‘;;

- : char = ‘A‘
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and can be built from their ASCII code as in:

#char_of_int 65;;

- : char = ‘A‘

Other operations are available (sub_string, int_of_char, etc). See sections 21.15, 21.7, 21.2
and 21.5, for complete information.

5.4 Tuples

5.4.1 Constructing tuples

It is possible to combine values into tuples (pairs, triples, . . . ). The value constructor for tuples is
the “,” character (the comma). We will often use parentheses around tuples in order to improve
readability, but they are not strictly necessary.

#1,2;;

- : int * int = 1, 2

#1,2,3,4;;

- : int * int * int * int = 1, 2, 3, 4

#let p = (1+2, 1<2);;

p : int * bool = 3, true

The infix “*” identifier is the type constructor for tuples. For instance, t1∗t2 corresponds to the
mathematical cartesian product of types t1 and t2.

We can build tuples from any values: the tuple value constructor is generic.

5.4.2 Extracting pair components

Projection functions are used to extract components of tuples. For pairs, we have:

#fst;;

- : ’a * ’b -> ’a = <fun>

#snd;;

- : ’a * ’b -> ’b = <fun>

They have polymorphic types, of course, since they may be applied to any kind of pair. They are
predefined in the Caml system, but could be defined by the user (in fact, the cartesian product
itself could be defined — see section 7.1, dedicated to user-defined product types):

#let first (x,y) = x

#and second (x,y) = y;;

first : ’a * ’b -> ’a = <fun>

second : ’a * ’b -> ’b = <fun>

#first p;;

- : int = 3

#second p;;

- : bool = true
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We say that first is a generic value because it works uniformly on several kinds of arguments
(provided they are pairs). We often confuse between “generic” and “polymorphic”, saying that
such value is polymorphic instead of generic.

5.5 Patterns and pattern-matching

Patterns and pattern-matching play an important role in ML languages. They appear in all real
programs and are strongly related to types (predefined or user-defined).

A pattern indicates the shape of a value. Patterns are “values with holes”. A single variable
(formal parameter) is a pattern (with no shape specified: it matches any value). When a value
is matched against a pattern (this is called pattern-matching), the pattern acts as a filter. We
already used patterns and pattern-matching in all the functions we wrote: the function body
(function x -> ...) does (trivial) pattern-matching. When applied to a value, the formal
parameter x gets bound to that value. The function body (function (x,y) -> x+y) does also
pattern-matching: when applied to a value (a pair, because of well-typing hypotheses), the x and
y get bound respectively to the first and the second component of that pair.

All these pattern-matching examples were trivial ones, they did not involve any test:

• formal parameters such as x do not impose any particular shape to the value they are supposed
to match;

• pair patterns such as (x,y) always match for typing reasons (cartesian product is a product
type).

However, some types do not guarantee such a uniform shape to their values. Consider the bool

type: an element of type bool is either true or false. If we impose to a value of type bool to
have the shape of true, then pattern-matching may fail. Consider the following function:

#let f = function true -> false;;

> Toplevel input:

>let f = function true -> false;;

> ^^^^^^^^^^^^^^^^^^^^^^

> Warning: pattern matching is not exhaustive

f : bool -> bool = <fun>

The compiler warns us that the pattern-matching may fail (we did not consider the false case).
Thus, if we apply f to a value that evaluates to true, pattern-matching will succeed (an equality

test is performed during execution).

#f (1<2);;

- : bool = false

But, if f’s argument evaluates to false, a run-time error is reported:

#f (1>2);;

Uncaught exception: Match_failure ("", 1343, 1365)

Here is a correct definition using pattern-matching:
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#let negate = function true -> false

# | false -> true;;

negate : bool -> bool = <fun>

The pattern-matching has now two cases, separated by the “|” character. Cases are examined in
turn, from top to bottom. An equivalent definition of negate would be:

#let negate = function true -> false

# | x -> true;;

negate : bool -> bool = <fun>

The second case now matches any boolean value (in fact, only false since true has been caught by
the first match case). When the second case is chosen, the identifier x gets bound to the argument
of negate, and could be used in the right-hand part of the match case. Since in our example we
do not use the value of the argument in the right-hand part of the second match case, another
equivalent definition of negate would be:

#let negate = function true -> false

# | _ -> true;;

negate : bool -> bool = <fun>

Where “_” acts as a formal paramenter (matches any value), but does not introduce any binding:
it should be read as “anything else”.

As an example of pattern-matching, consider the following function definition (truth value table
of implication):

#let imply = function (true,true) -> true

# | (true,false) -> false

# | (false,true) -> true

# | (false,false) -> true;;

imply : bool * bool -> bool = <fun>

Here is another way of defining imply, by using variables:

#let imply = function (true,x) -> x

# | (false,x) -> true;;

imply : bool * bool -> bool = <fun>

Simpler, and simpler again:

#let imply = function (true,x) -> x

# | (false,_) -> true;;

imply : bool * bool -> bool = <fun>

#let imply = function (true,false) -> false

# | _ -> true;;

imply : bool * bool -> bool = <fun>

Pattern-matching is allowed on any type of value (non-trivial pattern-matching is only possible on
types with data constructors).

For example:
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#let is_zero = function 0 -> true | _ -> false;;

is_zero : int -> bool = <fun>

#let is_yes = function "oui" -> true

# | "si" -> true

# | "ya" -> true

# | "yes" -> true

# | _ -> false;;

is_yes : string -> bool = <fun>

5.6 Functions

The type constructor “->” is predefined and cannot be defined in ML’s type system. We shall
explore in this section some further aspects of functions and functional types.

5.6.1 Functional composition

Functional composition is easily definable in Caml. It is of course a polymorphic function:

#let compose f g = function x -> f (g (x));;

compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>

The type of compose contains no more constraints than the ones appearing in the definition: in a
sense, it is the most general type compatible with these constraints.

These constraints are:

• the codomain of g and the domain of f must be the same;

• x must belong to the domain of g;

• compose f g x will belong to the codomain of f.

Let’s see compose at work:

#let succ x = x+1;;

succ : int -> int = <fun>

#compose succ list_length;;

- : ’a list -> int = <fun>

#(compose succ list_length) [1;2;3];;

- : int = 4

5.6.2 Currying

We can define two versions of the addition function:
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#let plus = function (x,y) -> x+y;;

plus : int * int -> int = <fun>

#let add = function x -> (function y -> x+y);;

add : int -> int -> int = <fun>

These two functions differ only in their way of taking their arguments. The first one will take an
argument belonging to a cartesian product, the second one will take a number and return a function.
The add function is said to be the curried version of plus (in honor of the logician Haskell Curry).

The currying transformation may be written in Caml under the form of a higher-order function:

#let curry f = function x -> (function y -> f(x,y));;

curry : (’a * ’b -> ’c) -> ’a -> ’b -> ’c = <fun>

Its inverse function may be defined by:

#let uncurry f = function (x,y) -> f x y;;

uncurry : (’a -> ’b -> ’c) -> ’a * ’b -> ’c = <fun>

We may check the types of curry and uncurry on particular examples:

#uncurry (prefix +);;

- : int * int -> int = <fun>

#uncurry (prefix ^);;

- : string * string -> string = <fun>

#curry plus;;

- : int -> int -> int = <fun>

Exercises

5.1 Define functions that compute the surface area and the volume of well-known geometric objects
(rectangles, circles, spheres, . . . ).

5.2 What would happen in a language submitted to call-by-value with recursion if there was no
conditional construct (if ... then ... else ...)?

5.3 Define the factorial function such that:

factorial n = n ∗ (n− 1) ∗ . . . ∗ 2 ∗ 1

Give two versions of factorial: recursive and tail recursive.

5.4 Define the fibonacci function that, when given a number n, returns the nth Fibonacci num-
ber, i.e. the nth term un of the sequence defined by:

u1 = 1
u2 = 1
un+2 = un+1 + un
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5.5 What are the types of the following expressions?

• uncurry compose

• compose curry uncurry

• compose uncurry curry
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Lists

Lists represent an important data structure, mainly because of their success in the Lisp language.
Lists in ML are homogeneous: a list cannot contain elements of different types. This may be
annoying to new ML users, yet lists are not as fundamental as in Lisp, since ML provides a facility
for introducing new types allowing the user to define more precisely the data structures needed by
the program (cf. chapter 7).

6.1 Building lists

Lists are empty or non empty sequences of elements. They are built with two value constructors:

• [], the empty list (read: nil);

• ::, the non-empty list constructor (read: cons). It takes an element e and a list l, and builds
a new list whose first element (head) is e and rest (tail) is l.

The special syntax [e1; . . . ; en ] builds the list whose elements are e1, . . . , en. It is equivalent to
e1 :: (e2 :: . . . (en :: []) . . .).

We may build lists of numbers:

#1::2::[];;

- : int list = [1; 2]

#[3;4;5];;

- : int list = [3; 4; 5]

#let x=2 in [1; 2; x+1; x+2];;

- : int list = [1; 2; 3; 4]

Lists of functions:

#let adds =

# let add x y = x+y

# in [add 1; add 2; add 3];;

adds : (int -> int) list = [<fun>; <fun>; <fun>]

51
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and indeed, lists of anything desired.
We may wonder what are the types of the list (data) constructors. The empty list is a list of

anything (since it has no element), it has thus the type “list of anything”. The list constructor ::
takes an element and a list (containing elements with the same type) and returns a new list. Here
again, there is no type constraint on the elements considered.

#[];;

- : ’a list = []

#function head -> function tail -> head::tail;;

- : ’a -> ’a list -> ’a list = <fun>

We see here that the list type is a recursive type. The :: constructor receives two arguments;
the second argument is itself a list.

6.2 Extracting elements from lists: pattern-matching

We know how to build lists; we now show how to test emptiness of lists (although the equality
predicate could be used for that) and extract elements from lists (e.g. the first one). We have used
pattern-matching on pairs, numbers or boolean values. The syntax of patterns also includes list
patterns. (We will see that any data constructor can actually be used in a pattern.) For lists, at
least two cases have to be considered (empty, non empty):

#let is_null = function [] -> true | _ -> false;;

is_null : ’a list -> bool = <fun>

#let head = function x::_ -> x

# | _ -> raise (Failure "head");;

head : ’a list -> ’a = <fun>

#let tail = function _::l -> l

# | _ -> raise (Failure "tail");;

tail : ’a list -> ’a list = <fun>

The expression raise (Failure "head") will produce a run-time error when evaluated. In the
definition of head above, we have chosen to forbid taking the head of an empty list. We could have
chosen tail [] to evaluate to [], but we cannot return a value for head [] without changing the
type of the head function.

We say that the types list and bool are sum types, because they are defined with several
alternatives:

• a list is either [] or :: of . . .

• a boolean value is either true or false

Lists and booleans are typical examples of sum types. Sum types are the only types whose
values need run-time tests in order to be matched by a non-variable pattern (i.e. a pattern that is
not a single variable).

The cartesian product is a product type (only one alternative). Product types do not involve run-
time tests during pattern-matching, because the type of their values suffices to indicate statically
what their structure is.
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6.3 Functions over lists

We will see in this section the definition of some useful functions over lists. These functions are of
general interest, but are not exhaustive. Some of them are predefined in the Caml Light system.
See also [9] or [35] for other examples of functions over lists.

Computation of the length of a list:

#let rec length = function [] -> 0

# | _::l -> 1 + length(l);;

length : ’a list -> int = <fun>

#length [true; false];;

- : int = 2

Concatenating two lists:

#let rec append =

# function [], l2 -> l2

# | (x::l1), l2 -> x::(append (l1,l2));;

append : ’a list * ’a list -> ’a list = <fun>

The append function is already defined in Caml, and bound to the infix identifier @.

#[1;2] @ [3;4];;

- : int list = [1; 2; 3; 4]

Reversing a list:

#let rec rev = function [] -> []

# | x::l -> (rev l) @ [x];;

rev : ’a list -> ’a list = <fun>

#rev [1;2;3];;

- : int list = [3; 2; 1]

The map function applies a function on all the elements of a list, and return the list of the function
results. It demonstrates full functionality (it takes a function as argument), list processing, and
polymorphism (note the sharing of type variables between the arguments of map in its type).

#let rec map f =

# function [] -> []

# | x::l -> (f x)::(map f l);;

map : (’a -> ’b) -> ’a list -> ’b list = <fun>

#map (function x -> x+1) [1;2;3;4;5];;

- : int list = [2; 3; 4; 5; 6]

#map length [ [1;2;3]; [4;5]; [6]; [] ];;

- : int list = [3; 2; 1; 0]
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The following function is a list iterator. It takes a function f , a base element a and a list
[x1;. . . ;xn]. It computes:

it_list f a [x1; . . . ;xn] = f (. . . (f (f a x1) x2) . . .)xn

For instance, when applied to the curried addition function, to the base element 0, and to a list of
numbers, it computes the sum of all elements in the list. The expression:

it_list (prefix +) 0 [1;2;3;4;5]

evaluates to ((((0+1)+2)+3)+4)+5

i.e. to 15.

#let rec it_list f a =

# function [] -> a

# | x::l -> it_list f (f a x) l;;

it_list : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a = <fun>

#let sigma = it_list prefix + 0;;

sigma : int list -> int = <fun>

#sigma [1;2;3;4;5];;

- : int = 15

#it_list (prefix *) 1 [1;2;3;4;5];;

- : int = 120

The it_list function is one of the many ways to iterate over a list. For other list iteration
functions, see [9].

Exercises

6.1 Define the combine function which, when given a pair of lists, returns a list of pairs such that:

combine ([x1;...;xn],[y1;...;yn]) = [(x1,y1);...;(xn,yn)]

The function generates a run-time error if the argument lists do not have the same length.

6.2 Define a function which, when given a list, returns the list of all its sublists.
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User-defined types

The user is allowed to define his/her own data types. With this facility, there is no need to encode
the data structures that must be manipulated by a program into lists (as in Lisp) or into arrays (as
in Fortran). Furthermore, early detection of type errors is enforced, since user-defined data types
reflect precisely the needs of the algorithms.

Types are either:

• product types,

• or sum types.

We have already seen examples of both kinds of types: the bool and list types are sum types
(they contain values with different shapes and are defined and matched using several alternatives).
The cartesian product is an example of a product type: we know statically the shape of values
belonging to cartesian products.

In this chapter, we will see how to define and use new types in Caml.

7.1 Product types

Product types are finite labeled products of types. They are a generalization of cartesian product.
Elements of product types are called records.

7.1.1 Defining product types

An example: suppose we want to define a data structure containing information about individuals.
We could define:

#let jean=("Jean",23,"Student","Paris");;

jean : string * int * string * string = "Jean", 23, "Student", "Paris"

and use pattern-matching to extract any particular information about the person jean. The prob-
lem with such usage of cartesian product is that a function name_of returning the name field of
a value representing an individual would have the same type as the general first projection for
4-tuples (and indeed would be the same function). This type is not precise enough since it allows
for the application of the function to any 4-uple, and not only to values such as jean.

Instead of using cartesian product, we define a person data type:

55
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#type person =

# {Name:string; Age:int; Job:string; City:string};;

Type person defined.

The type person is the product of string, int, string and string. The field names provide type
information and also documentation: it is much easier to understand data structures such as jean
above than arbitrary tuples.

We have labels (i.e. Name, . . . ) to refer to components of the products. The order of appearance
of the products components is not relevant: labels are sufficient to uniquely identify the components.
The Caml system finds a canonical order on labels to represent and print record values. The order
is always the order which appeared in the definition of the type.

We may now define the individual jean as:

#let jean = {Job="Student"; City="Paris";

# Name="Jean"; Age=23};;

jean : person = {Name="Jean"; Age=23; Job="Student"; City="Paris"}

This example illustrates the fact that order of labels is not relevant.

7.1.2 Extracting products components

The canonical way of extracting product components is pattern-matching. Pattern-matching pro-
vides a way to mention the shape of values and to give (local) names to components of values. In
the following example, we name n the numerical value contained in the field Age of the argument,
and we choose to forget values contained in other fields (using the _ character).

#let age_of = function

# {Age=n; Name=_; Job=_; City=_} -> n;;

age_of : person -> int = <fun>

#age_of jean;;

- : int = 23

It is also possible to access the value of a single field, with the . (dot) operator:

#jean.Age;;

- : int = 23

#jean.Job;;

- : string = "Student"

Labels always refer to the most recent type definition: when two record types possess some common
labels, then these labels always refer to the most recently defined type. When using modules (see
section 12.2) this problem arises for types defined in the same module. For types defined in different
modules, the full name of labels (i.e. with the name of the modules prepended) disambiguates such
situations.
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7.1.3 Parameterized product types

It is important to be able to define parameterized types in order to define generic data structures.
The list type is parameterized, and this is the reason why we may build lists of any kind of values.
If we want to define the cartesian product as a Caml type, we need type parameters because we
want to be able to build cartesian product of any pair of types.

#type (’a,’b) pair = {Fst:’a; Snd:’b};;

Type pair defined.

#let first x = x.Fst and second x = x.Snd;;

first : (’a, ’b) pair -> ’a = <fun>

second : (’a, ’b) pair -> ’b = <fun>

#let p={Snd=true; Fst=1+2};;

p : (int, bool) pair = {Fst=3; Snd=true}

#first(p);;

- : int = 3

Warning: the pair type is similar to the Caml cartesian product *, but it is a different type.

#fst p;;

> Toplevel input:

>fst p;;

> ^

> Expression of type (int, bool) pair

> cannot be used with type ’a * ’b

Actually, any two type definitions produce different types. If we enter again the previous definition:

#type (’a,’b) pair = {Fst:’a; Snd:’b};;

Type pair defined.

we cannot any longer extract the Fst component of x:

#p.Fst;;

> Toplevel input:

>p.Fst;;

>^

> Expression of type (int, bool) pair

> cannot be used with type (’a, ’b) pair

since the label Fst refers to the latter type pair that we defined, while p’s type is the former pair.

7.2 Sum types

A sum type is the finite labeled disjoint union of several types. A sum type definition defines a type
as being the union of some other types.
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7.2.1 Defining sum types

Example: we want to have a type called identification whose values can be:

• either strings (name of an individual),

• or integers (encoding of social security number as a pair of integers).

We then need a type containing both int * int and character strings. We also want to preserve
static type-checking, we thus want to be able to distinguish pairs from character strings even if
they are injected in order to form a single type.

Here is what we would do:

#type identification = Name of string

# | SS of int * int;;

Type identification defined.

The type identification is the labeled disjoint union of string and int * int. The labels
Name and SS are injections. They respectively inject int * int and string into a single type
identification.

Let us use these injections in order to build new values:

#let id1 = Name "Jean";;

id1 : identification = Name "Jean"

#let id2 = SS (1670728,280305);;

id2 : identification = SS (1670728, 280305)

Values id1 and id2 belong to the same type. They may for example be put into lists as in:

#[id1;id2];;

- : identification list = [Name "Jean"; SS (1670728, 280305)]

Injections may possess one argument (as in the example above), or none. The latter case
corresponds1 to enumerated types, as in Pascal. An example of enumerated type is:

#type suit = Heart

# | Diamond

# | Club

# | Spade;;

Type suit defined.

#Club;;

- : suit = Club

The type suit contains only 4 distinct elements. Let us continue this example by defining a type
for cards.

1In Caml Light, there is no implicit order on values of sum types.
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#type card = Ace of suit

# | King of suit

# | Queen of suit

# | Jack of suit

# | Plain of suit * int;;

Type card defined.

The type card is the disjoint union of:

• suit under the injection Ace,

• suit under the injection King,

• suit under the injection Queen,

• suit under the injection Jack,

• the product of int and suit under the injection Plain.

Let us build a list of cards:

#let figures_of c = [Ace c; King c; Queen c; Jack c]

#and small_cards_of c =

# map (function n -> Plain(c,n)) [7;8;9;10];;

figures_of : suit -> card list = <fun>

small_cards_of : suit -> card list = <fun>

#figures_of Heart;;

- : card list = [Ace Heart; King Heart; Queen Heart; Jack Heart]

#small_cards_of Spade;;

- : card list = [Plain (Spade, 7); Plain (Spade, 8); Plain (Spade, 9); Plain (Sp

ade, 10)]

7.2.2 Extracting sum components

Of course, pattern-matching is used to extract sum components. In case of sum types, pattern-
matching uses dynamic tests for this extraction. The next example defines a function color re-
turning the name of the color of the suit argument:

#let color = function Diamond -> "red"

# | Heart -> "red"

# | _ -> "black";;

color : suit -> string = <fun>

Let us count the values of cards (assume we are playing “belote”):

#let count trump = function

# Ace _ -> 11

# | King _ -> 4
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# | Queen _ -> 3

# | Jack c -> if c = trump then 20 else 2

# | Plain (c,10) -> 10

# | Plain (c,9) -> if c = trump then 14 else 0

# | _ -> 0;;

count : suit -> card -> int = <fun>

7.2.3 Recursive types

Some types possess a naturally recursive structure, lists, for example. It is also the case for tree-like
structures, since trees have subtrees that are trees themselves.

Let us define a type for abstract syntax trees of a simple arithmetic language2. An arithmetic
expression will be either a numeric constant, or a variable, or the addition, multiplication, difference,
or division of two expressions.

#type arith_expr = Const of int

# | Var of string

# | Plus of args

# | Mult of args

# | Minus of args

# | Div of args

#and args = {Arg1:arith_expr; Arg2:arith_expr};;

Type arith_expr defined.

Type args defined.

The two types arith_expr and args are simultaneously defined, and arith_expr is recursive since
its definition refers to args which itself refers to arith_expr. As an example, one could represent
the abstract syntax tree of the arithmetic expression “x+(3*y)” as the Caml value:

#Plus {Arg1=Var "x";

# Arg2=Mult{Arg1=Const 3; Arg2=Var "y"}};;

- : arith_expr = Plus {Arg1=Var "x"; Arg2=Mult {Arg1=Const 3; Arg2=Var "y"}}

The recursive definition of types may lead to types such that it is hard or impossible to build
values of these types. For example:

#type stupid = {Head:stupid; Tail:stupid};;

Type stupid defined.

Elements of this type are infinite data structures. Essentially, the only way to construct one is:

#let rec stupid_value =

# {Head=stupid_value; Tail=stupid_value};;

stupid_value : stupid = {Head={Head={Head={Head={Head={Head={Head={Head={Head={H

ead={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Hea

2Syntax trees are said to be abstract because they are pieces of abstract syntax contrasting with concrete syntax

which is the “string” form of programs: analyzing (parsing) concrete syntax usually produces abstract syntax.
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d={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head=

{Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={H

ead={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Hea

d={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head=

{Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head={H

ead={Head={Head={Head={Head={Head={Head={Head={Head={Head={Head=...

Recursive type definitions should be well-founded (i.e. possess a non-recursive case, or base
case) in order to work well with call-by-value.

7.2.4 Parameterized sum types

Sum types may also be parameterized. Here is the definition of a type isomorphic to the list type:

#type ’a sequence = Empty

# | Sequence of ’a * ’a sequence;;

Type sequence defined.

A more sophisticated example is the type of generic binary trees:

#type (’a,’b) btree = Leaf of ’b

# | Btree of (’a,’b) node

#and (’a,’b) node = {Op:’a;

# Son1: (’a,’b) btree;

# Son2: (’a,’b) btree};;

Type btree defined.

Type node defined.

A binary tree is either a leaf (holding values of type ’b) or a node composed of an operator (of
type ’a) and two sons, both of them being binary trees.

Binary trees can also be used to represent abstract trees for arithmetic expressions (with only
binary operators and only one kind of leaves). The abstract syntax tree t of “1+2” could be defined
as:

#let t = Btree {Op="+"; Son1=Leaf 1; Son2=Leaf 2};;

t : (string, int) btree = Btree {Op="+"; Son1=Leaf 1; Son2=Leaf 2}

Finally, it is time to notice that pattern-matching is not restricted to function bodies, i.e.
constructs such as:

function P1 -> E1

| . . .

| Pn -> En

but there is also a construct dedicated to pattern-matching of actual values:

match E with P1 -> E1

| . . .

| Pn -> En
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which matches the value of the expression E against each of the patterns Pi, selecting the first one
that matches, and giving control to the corresponding expression. For example, we can match the
tree t previously defined by:

#match t with Btree{Op=x; Son1=_; Son2=_} -> x

# | Leaf l -> "No operator";;

- : string = "+"

7.2.5 Data constructors and functions

One may ask: “What is the difference between a sum data constructor and a function?”. At
first sight, they look very similar. We assimilate constant data constructors (such as Heart) to
constants. However, in Caml Light, sum data constructors with arguments are not presented as
functions from the element types to the sum type:

#Ace;;

> Toplevel input:

>Ace;;

>^^^

> Constructor Ace expects an argument

The reason is that a data constructor possesses particular properties that a general function does
not possess, and it is interesting to understand these differences. From the mathematical point of
view, a sum data constructor is known to be an injection while a Caml function is a general function
without further information. A mathematical injection f : A→ B admits an inverse function f−1

from its image f(A) ⊂ B to A.

From the examples above, if we consider the King constructor, then:

#let king c = King c;;

king : suit -> card = <fun>

king is the general function associated to the King constructor, and:

#function King c -> c;;

> Toplevel input:

>function King c -> c;;

>^^^^^^^^^^^^^^^^^^^^

> Warning: pattern matching is not exhaustive

- : card -> suit = <fun>

is the inverse function for king. It is a partial function, since pattern-matching may fail.

7.2.6 Degenerate cases: when sums meet products

What is the status of a sum type with a single case such as:

#type counter1 = Counter of int;;

Type counter1 defined.
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Of course, the type counter1 is isomorphic to int. The injection function x -> Counter x is a
total function from int to counter1. It is thus a bijection.

Another way to define a type isomorphic to int would be:

#type counter2 = {Counter: int};;

Type counter2 defined.

The types counter1 and counter2 are isomorphic to int. They are at the same time sum and
product types. Their pattern-matching does not perform any run-time test.

The possibility of defining arbitrary complex data types permits the easy manipulation of ab-
stract syntax trees in Caml (such as the arith_expr type above). These abstract syntax trees are
supposed to represent programs of a language (e.g. a language of arithmetic expressions). These
kind of languages which are defined in Caml are called object-languages and Caml is said to be
their metalanguage.

7.3 Summary

• New types can be introduced in Caml.

• Types may be parameterized by type variables. The syntax of type parameters is:

<params> ::

| <tvar>

| ( <tvar> [, <tvar>]* )

• Types can be recursive.

• Product types:

– Mathematical product of several types.

– The construct is:

type <params> <tname> =

{<Field>: <type>; ...}

where the <type>s may contain type variables appearing in <params>.

• Sum types:

– Mathematical disjoint union of several types.

– The construct is:

type <params> <tname> =

<Injection> [of <type>] | ...

where the <type>s may contain type variables appearing in <params>.
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Exercises

7.1 Define a function taking as argument a binary tree and returning a pair of lists: the first one
contains all operators of the tree, the second one contains all its leaves.

7.2 Define a function map_btree analogous to the map function on lists. The function map_btree

should take as arguments two functions f and g, and a binary tree. It should return a new binary
tree whose leaves are the result of applying f to the leaves of the tree argument, and whose operators
are the results of applying the g function to the operators of the argument.

7.3 We can associate to the list type definition an canonical iterator in the following way. We
give a functional interpretation to the data constructors of the list type.

We change the list constructors [] and :: respectively into a constant a and an operator ⊕
(used as a prefix identifier), and abstract with respect to these two operators, obtaining the list
iterator satisfying:

list_it ⊕ a [] = a

list_it ⊕ a (x1::. . . ::xn::[]) = x1 ⊕ (. . .⊕ (xn ⊕ a). . . )

Its Caml definition would be:

#let list_it f a = it_rec

#where rec it_rec =

# function [] -> a

# | x::L -> f x (it_rec L);;

list_it : (’a -> ’b -> ’b) -> ’b -> ’a list -> ’b = <fun>

As an example, the application of it_list to the functional composition and to its neutral element
(the identity function), computes the composition of lists of functions (try it!).

Define, using the same method, a canonical iterator over binary trees.
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Chapter 8

Mutable data structures

The definition of a sum or product type may be annotated to allow physical (destructive) update
on data structures of that type. This is the main feature of the imperative programming style.
Writing values into memory locations is the fundamental mechanism of imperative languages such
as Pascal. The Lisp language, while mostly functional, also provides the dangerous functions rplaca
and rplacd to physically modify lists. Mutable structures are required to implement many efficient
algorithms. They are also very convenient to represent the current state of a state machine.

8.1 User-defined mutable data structures

Assume we want to define a type person as in the previous chapter. Then, it seems natural to
allow a person to change his/her age, job and the city that person lives in, but not his/her name.
We can do this by annotating some labels in the type definition of person by the mutable keyword:

#type person =

# {Name: string; mutable Age: int;

# mutable Job: string; mutable City: string};;

Type person defined.

We can build values of type person in the very same way as before:

#let jean =

# {Name="Jean"; Age=23; Job="Student"; City="Paris"};;

jean : person = {Name="Jean"; Age=23; Job="Student"; City="Paris"}

But now, the value jean may be physically modified in the fields specified to be mutable in the
definition (and only in these fields).

We can modify the field Field of an expression <expr1> in order to assign it the value of
<expr2> by using the following construct:

<expr1>.Field <- <expr2>

For example; if we want jean to become one year older, we would write:

#jean.Age <- jean.Age + 1;;

- : unit = ()
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Now, the value jean has been modified into:

#jean;;

- : person = {Name="Jean"; Age=24; Job="Student"; City="Paris"}

We may try to change the Name of jean, but we won’t succeed: the typecheker will not allow us to
do that.

#jean.Name <- "Paul";;

> Toplevel input:

>jean.Name <- "Paul";;

>^^^^^^^^^^^^^^^^^^^

> Label Name is not mutable.

It is of course possible to use such constructs in functions as in:

#let get_older ({Age=n; _} as p) = p.Age <- n + 1;;

get_older : person -> unit = <fun>

In that example, we named n the current Age of the argument, but we also named p the argument.
This is an alias pattern: it saves us the bother of writing:

#let get_older p =

# match p with {Age=n} -> p.Age <- n + 1;;

get_older : person -> unit = <fun>

Notice that in the two previous expressions, we did not specify all fields of the record p. Other
examples would be:

#let move p new_city = p.City <- new_city

#and change_job p j = p.Job <- j;;

move : person -> string -> unit = <fun>

change_job : person -> string -> unit = <fun>

#change_job jean "Teacher"; move jean "Cannes";

#get_older jean; jean;;

- : person = {Name="Jean"; Age=25; Job="Teacher"; City="Cannes"}

We used the “;” character between the different changes we imposed to jean. This is the sequencing
of evaluations: it permits to evaluate successively several expressions, discarding the result of each
(except the last one). This construct becomes useful in the presence of side-effects such as physical
modifications and input/output, since we want to explicitly specify the order in which they are
performed.

8.2 The ref type

The ref type is the predefined type of mutable indirection cells. It is present in the Caml system
for reasons of compatibility with earlier versions of Caml. The ref type could be defined as follows
(we don’t use the ref name in the following definition because we want to preserve the original
ref type):
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#type ’a reference = {mutable Ref: ’a};;

Type reference defined.

Example of building a value of type ref:

#let r = ref (1+2);;

r : int ref = ref 3

The ref identifier is syntactically presented as a sum data constructor. The definition of r should
be read as “let r be a reference to the value of 1+2”. The value of r is nothing but a memory
location whose contents can be overwritten.

We consult a reference (i.e. read its memory location) with the “!” symbol:

#!r + 1;;

- : int = 4

We modify values of type ref with the := infix function:

#r:=!r+1;;

- : unit = ()

#r;;

- : int ref = ref 4

Some primitives are attached to the ref type, for example:

#incr;;

- : int ref -> unit = <fun>

#decr;;

- : int ref -> unit = <fun>

which increments (resp. decrements) references on integers. A description of primitives on refer-
ences can be found in section 21.13.

8.3 Arrays

Arrays are modifiable data structures. They belong to the parameterized type ’a vect. Array
expressions are bracketed by [| and |], and elements are separated by semicolons:

#let a = [| 10; 20; 30 |];;

a : int vect = [|10; 20; 30|]

The length of an array is returned by with the function vect_length:

#vect_length a;;

- : int = 3
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8.3.1 Accessing array elements

Accesses to array elements can be done using the following syntax:

#a.(0);;

- : int = 10

or, more generally: e1.(e2), where e1 evaluates to an array and e2 to an integer. Alternatively, the
function vect_item is provided:

#vect_item;;

- : ’a vect -> int -> ’a = <fun>

The first element of an array is at index 0. Arrays are useful because accessing an element is done
in constant time: an array is a contiguous fragment of memory, while accessing list elements takes
linear time.

8.3.2 Modifying array elements

Modification of an array element is done with the construct:

e1.(e2) <- e3

where e3 has the same type as the elements of the array e1. The expression e2 computes the index
at which the modification will occur.

As for accessing, a function for modifying array elements is also provided:

#vect_assign;;

- : ’a vect -> int -> ’a -> unit = <fun>

For example:

#a.(0) <- (a.(0)-1);;

- : unit = ()

#a;;

- : int vect = [|9; 20; 30|]

#vect_assign a 0 ((vect_item a 0) - 1);;

- : unit = ()

#a;;

- : int vect = [|8; 20; 30|]

More information of arrays and associated primitives can be found in sections 21.16 and 21.8.

8.4 Loops: while and for

Imperative programming (i.e. using side-effects such as physical modification of data structures)
traditionally makes use of sequences and explicit loops. Sequencing evaluation in Caml Light is
done by using the semicolon “;”. Evaluating expression e1, discarding the value returned, and then
evaluating e2 is written:
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e1 ; e2

If e1 and e2 perform side-effects, this construct ensures that they will be performed in the specified
order (from left to right). In order to emphasize sequential side-effects, instead of using parentheses
around sequences, one can use begin and end, as in:

#let x = ref 1 in

# begin

# x:=!x+1;

# x:=!x*!x

# end;;

- : unit = ()

The keywords begin and end are equivalent to opening and closing parentheses. The program
above could be written as:

#let x = ref 1 in

# (x:=!x+1; x:=!x*!x);;

- : unit = ()

Explicit loops are not strictly necessary per se: a recursive function could perform the same
work. However, the usage of an explicit loop locally emphasizes a more imperative style. Two loops
are provided:

• while: while e1 do e2 done evaluates e1 which must return a boolean expression, if e1 return
true, then e2 (which is usually a sequence) is evaluated, then e1 is evaluated again and so on
until e1 returns false.

• for: two variants, increasing and decreasing

– for v=e1 to e2 do e3 done

– for v=e1 downto e2 do e3 done

where v is an identifier. Expressions e1 and e2 are the bounds of the loop: they must evaluate
to integers. In the case of the increasing loop, the expressions e1 and e2 are evaluated
producing values n1 and n2 : if n1 is strictly greater than n2, then nothing is done. Otherwise,
e3 is evaluated (n2 − n1) + 1 times, with the variable v bound successively to n1, n1 + 1, . . . ,
n2.

The behavior of the decreasing loop is similar: if n1 is strictly smaller than n2, then nothing
is done. Otherwise, e3 is evaluated (n1 − n2) + 1 times with v bound to successive values
decreasing from n1 to n2.

Both loops return the value () of type unit.

#for i=0 to (vect_length a) - 1 do a.(i) <- i done;;

- : unit = ()

#a;;

- : int vect = [|0; 1; 2|]
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8.5 Polymorphism and mutable data structures

There are some restrictions concerning polymorphism and mutable data structures. One cannot
enclose polymorphic objects inside mutable data structures.

#let r = ref [];;

> Toplevel input:

>let r = ref [];;

>^^^^^^^^^^^^^^^^

> Cannot generalize ’a in ’a list ref

The reason is that once the type of r, (’a list) ref, has been computed, it cannot be changed.
But the value of r can be changed: we could write:

r:=[1;2];;

and now, r would be a reference on a list of numbers while its type would still be (’a list) ref,
allowing us to write:

r:= true::!r;;

making r a reference on [true; 1; 2], which is an illegal Caml object.
Thus the Caml typechecker imposes that modifiable data structures appearing at toplevel must

possess monomorphic types (i.e. not polymorphic).

Exercises

8.1 Give a mutable data type defining the Lisp type of lists and define the four functions car, cdr,
rplaca and rplacd.

8.2 Define a stamp function, of type unit -> int, that returns a fresh integer each time it is
called. That is, the first call returns 1; the second call returns 2; and so on.

8.3 Define a quick_sort function on arrays of floating point numbers following the quicksort
algorithm [13]. Information about the quicksort algorithm can be found in [31], for example.



Chapter 9

Escaping from computations:
exceptions

In some situations, it is necessary to abort computations. If we are trying to compute the integer
division of an integer n by 0, then we must escape from that embarrassing situation without
returning any result.

Another example of the usage of such an escape mechanism appears when we want to define
the head function on lists:

#let head = function

# x::L -> x

# | [] -> raise (Failure "head: empty list");;

head : ’a list -> ’a = <fun>

We cannot give a regular value to the expression head [] without losing the polymorphism of head.
We thus choose to escape: we raise an exception.

9.1 Exceptions

An exception is a Caml value of the built-in type exn, very similar to a sum type. An exception:

• has a name (Failure in our example),

• and holds zero or one value ("head: empty list" of type string in the example).

Some exceptions are predefined, like Failure. New exceptions can be defined with the following
construct:

exception <exception name> [of <type>]

Example:

#exception Found of int;;

Exception Found defined.

The exception Found has been declared, and it carries integer values. When we apply it to an
integer, we get an exception value (of type exn):
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#Found 5;;

- : exn = Found 5

9.2 Raising an exception

Raising an exception is done by applying the primitive function raise to a value of type exn:

#raise;;

- : exn -> ’a = <fun>

#raise (Found 5);;

Uncaught exception: Found 5

Here is a more realistic example:

#let find_index p = find 1

#where rec find n =

# function [] -> raise (Failure "not found")

# | x::L -> if p(x) then raise (Found n)

# else find (n+1) L;;

find_index : (’a -> bool) -> ’a list -> ’b = <fun>

The find_index function always fails. It raises:

• Found n, if there is an element x of the list such that p(x), in this case n is the index of x in
the list,

• the Failure exception if no such x has been found.

Raising exceptions is more than an error mechanism: it is a programmable control structure. In
the find_index example, there was no error when raising the Found exception: we only wanted
to quickly escape from the computation, since we found what we were looking for. This is why it
must be possible to trap exceptions: we want to trap possible errors, but we also want to get our
result in the case of the find_index function.

9.3 Trapping exceptions

Trapping exceptions is achieved by the following construct:

try <expression> with <match cases>

This construct evaluates <expression>. If no exception is raised during the evaluation, then
the result of the try construct is the result of <expression>. If an exception is raised during this
evaluation, then the raised exception is matched against the <match cases>. If a case matches,
then control is passed to it. If no case matches, then the exception is propagated outside of the
try construct, looking for the enclosing try.

Example:
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#let find_index p L =

# let rec find n =

# function [] -> raise (Failure "not found")

# | x::L -> if p(x) then raise (Found n)

# else find (n+1) L

# in

# try find 1 L with Found n -> n;;

find_index : (’a -> bool) -> ’a list -> int = <fun>

#find_index (function n -> (n mod 2) = 0) [1;3;5;7;9;10];;

- : int = 6

#find_index (function n -> (n mod 2) = 0) [1;3;5;7;9];;

Uncaught exception: Failure "not found"

The <match cases> part of the try construct is a regular pattern matching on values of type exn.
It is thus possible to trap any exception by using the _ symbol. As an example, the following
function traps any exception raised during the application of its two arguments. Warning: the _

will also trap interrupts from the keyboard such as control-C!

#let catch_all f arg default =

# try f(arg) with _ -> default;;

catch_all : (’a -> ’b) -> ’a -> ’b -> ’b = <fun>

It is even possible to catch all exceptions, do something special (close or remove opened files, for
example), and raise again that exception, to propagate it upwards.

#let show_exceptions f arg =

# try f(arg) with x -> print_string "Exception raised!\n"; raise x;;

show_exceptions : (’a -> ’b) -> ’a -> ’b = <fun>

In the example above, we print a message to the standard output channel (the terminal), before
raising again the trapped exception.

#catch_all (function x -> raise (Failure "foo")) 1 0;;

- : int = 0

#catch_all (show_exceptions (function x -> raise (Failure "foo"))) 1 0;;

Exception raised!

- : int = 0

9.4 Polymorphism and exceptions

Exceptions must not be polymorphic for a reason similar to the one for references (although it is a
bit harder to give an example).

#exception Exc of ’a list;;

> Toplevel input:

>exception Exc of ’a list;;

> ^^^^^^^

> Type variable ’a is unbound
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One reason is that the excn type is not a parameterized type, but one deeper reason is that if the
exception Exc is declared to be polymorphic, then a function may raise Exc [1;2]. There might
be no mention of that fact in the type inferred for the function. Then, another function may trap
that exception, obtaining the value [1;2] whose real type is int list. But the only type known
by the typechecker is ’a list: the try form should refer to the Exc data constructor, which is
known to be polymorphic. It may then be possible to build an ill-typed Caml value [true; 1; 2],
since the typechecker does not possess any further type information than ’a list.

The problem is thus the absence of static connection from exceptions that are raised and the
occurrences where they are trapped. Another example would be the one of a function raising Exc

with an integer or a boolean value, depending on some condition. Then, in that case, when trying
to trap these exceptions, we cannot decide wether they will hold integers or boolean values.

Exercises

9.1 Define the function find_succeed which given a function f and a list L returns the first
element of L on which the application of f succeeds.

9.2 Define the function map_succeed which given a function f and a list L returns the list of the
results of successful applications of f to elements of L.
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Basic input/output

We describe in this chapter the Caml Light input/output model and some of its primitive operations.
More complete information about IO can be found in section 21.10, part IV.

Caml Light has an imperative input/output model: an IO operation should be considered as
a side-effect, and is thus dependent on the order of evaluation. IOs are performed onto channels
with types in_channel and out_channel. These types are abstract, i.e. their representation is not
accessible.

Three channels are predefined:

#std_in;;

- : in_channel = <abstract>

#std_out;;

- : out_channel = <abstract>

#std_err;;

- : out_channel = <abstract>

They are the “standard” IO channels: std_in is usually connected to the keyboard, and printing
onto std_out and std_err usually appears on the screen.

10.1 Printable types

It is not possible to print and read every value. Functions, for example, are typically not readable,
unless a suitable string representation is designed and reading such a representation is followed by
an interpretation computing the desired function.

We call printable type a type for which there are input/output primitives implemented in Caml
Light. The main printable types are:

• characters: type char;

• strings: type string;

• integers: type int;

• floating point numbers: type float.
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We know all these types from the previous chapters. Strings and characters support a notation for
escaping to ASCII codes or to denote special characters such as newline:

#‘A‘;;

- : char = ‘A‘

#‘\065‘;;

- : char = ‘A‘

#‘\\‘;;

- : char = ‘\\‘

#‘\n‘;;

- : char = ‘\n‘

#"string with\na newline inside";;

- : string = "string with\na newline inside"

The “\” character is used as an escape and is useful for non-printable or special characters. A
detailed account of escapes is given in section 20.1.

Of course, character constants can be used as constant patterns:

#function ‘a‘ -> 0 | _ -> 1;;

- : char -> int = <fun>

On types such as char that have a finite number of constant elements, it may be useful to use
or-patterns, gathering constants in the same matching rule:

#let is_vowel = function

# ‘a‘ | ‘e‘ | ‘i‘ | ‘o‘ | ‘u‘ | ‘y‘ -> true

#| _ -> false;;

is_vowel : char -> bool = <fun>

The first rule is chosen if the argument matches one of the cases. Since there is a total ordering on
characters, the syntax of character patterns is enriched with a “..” notation:

#let is_lower_case_letter = function

# ‘a‘..‘z‘ -> true

#| _ -> false;;

is_lower_case_letter : char -> bool = <fun>

Of course, or-patterns and this notation can be mixed, as in:

#let is_letter = function

# ‘a‘..‘z‘ | ‘A‘..‘Z‘ -> true

#| _ -> false;;

is_letter : char -> bool = <fun>

In the next sections, we give the most commonly used IO primitives on these printable types.
A complete listing of predefined IO operations is given in chapter 21.10, part IV.
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10.2 Output

Printing on standard output is performed by the following functions:

#print_char;;

- : char -> unit = <fun>

#print_string;;

- : string -> unit = <fun>

#print_int;;

- : int -> unit = <fun>

#print_float;;

- : float -> unit = <fun>

Printing is buffered, i.e. the effect of a call to a printing function may not be seen immediately:
flushing explicitly the output buffer is sometimes required, unless a printing function flushes it
implicitly. Flushing is done with the flush function:

#flush;;

- : out_channel -> unit = <fun>

#print_string "Hello!"; flush std_out;;

Hello!- : unit = ()

The print_newline function prints a newline character and flushes the standard output:

#print_newline;;

- : unit -> unit = <fun>

Flushing is required when writing standalone applications, in which the application may terminate
without all printing being done. Standalone applications should terminate by a call to the exit

function (from the io module), which flushes all pending output on std_out and std_err.
Printing on the standard error channel std_err is done with the following functions:

#prerr_char;;

- : char -> unit = <fun>

#prerr_string;;

- : string -> unit = <fun>

#prerr_int;;

- : int -> unit = <fun>

#prerr_float;;

- : float -> unit = <fun>

The following function prints its string argument followed by a newline character to std_err and
then flushes std_err.

#prerr_endline;;

- : string -> unit = <fun>
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10.3 Input

These input primitives flush the standard output and read from the standard input:

#read_line;;

- : unit -> string = <fun>

#read_int;;

- : unit -> int = <fun>

#read_float;;

- : unit -> float = <fun>

Because of their names and types, these functions do not need further explanation.

10.4 Channels on files

When programs have to read from or print to files, it is necessary to open and close channels on
these files.

10.4.1 Opening and closing channels

Opening and closing is performed with the following functions:

#open_in;;

- : string -> in_channel = <fun>

#open_out;;

- : string -> out_channel = <fun>

#close_in;;

- : in_channel -> unit = <fun>

#close_out;;

- : out_channel -> unit = <fun>

The open_in function checks the existence of its filename argument, and returns a new input
channel on that file; open_out creates a new file (or truncates it to zero length if it exists) and
returns an output channel on that file. Both functions fail if permissions are not sufficient for
reading or writing.

Warning:

• Closing functions close their channel argument. Since their behavior is unspecified on already
closed channels, anything can happen in this case!

• Closing one of the standard IO channels (std_in, std_out, std_err) have unpredictable
effects!
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10.4.2 Reading or writing from/to specified channels

Some of the functions on standard input/output have corresponding functions working on channels:

#output_char;;

- : out_channel -> char -> unit = <fun>

#output_string;;

- : out_channel -> string -> unit = <fun>

#input_char;;

- : in_channel -> char = <fun>

#input_line;;

- : in_channel -> string = <fun>

10.4.3 Failures

The exception End_of_file is raised when an input operation cannot complete because the end of
the file has been reached.

#End_of_file;;

- : exn = End_of_file

The exception sys__Sys_error (Sys_error from the module sys) is raised when some manip-
ulation of files is forbidden by the operating system:

#open_in "abracadabra";;

Uncaught exception: sys__Sys_error "No such file or directory"

The functions that we have seen in this chapter are sufficient for our needs. Many more exist
(useful mainly when working with files) and are described in chapter 21.10, part IV.

Exercises

10.1 Define a function copy_file taking two filenames (of type string) as arguments, and copy-
ing the contents of the first file on the second one. Error messages must be printed on std_err.

10.2 Define a function wc taking a filename as argument and printing on the standard output the
number of characters and lines appearing in the file. Error messages must be printed on std_err.

Note: it is good practice to develop a program in defining small functions. A single function doing
the whole work is usually harder to debug and to read. With small functions, one can trace them
(cf. section 26.2) and see the arguments they are called on and the result they produce.
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Chapter 11

Streams and parsers

In the next part of these course notes, we will implement a small functional language. Parsing valid
programs of this language requires writing a lexical analyzer and a parser for the language. For the
purpose of writing easily such programs, Caml Light provides a special data structure: streams.
Their main usage is to be interfaced to input channels or strings and to be matched against stream
patterns.

11.1 Streams

Streams belong to an abstract data type: their actual representation remains hidden from the user.
However, it is still possible to build streams either “by hand” or by using some predefined functions.

11.1.1 The stream type

The type stream is a parameterized type. One can build streams of integers, of characters or of
any other type. Streams receive a special syntax, looking like the one for lists. The empty stream
is written:

#[< >];;

- : ’a stream = <abstract>

A non empty stream possesses elements that are written preceded by the “’” (quote) character.

#[< ’0; ’1; ’2 >];;

- : int stream = <abstract>

Elements that are not preceded by “’” are substreams that are expanded in the enclosing stream:

#[< ’0; [<’1;’2>]; ’3 >];;

- : int stream = <abstract>

#let s = [< ’"abc" >] in [< s; ’"def" >];;

- : string stream = <abstract>

Thus, stream concatenation can be defined as:
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#let stream_concat s t = [< s; t >];;

stream_concat : ’a stream -> ’a stream -> ’a stream = <fun>

Building streams in this way can be useful while testing a parsing function or defining a lexical
analyzer (taking as argument a stream of characters and returning a stream of tokens). Stream
concatenation does not copy substreams: they are simply put in the same stream. Since (as we will
see later) stream matching has a destructive effect on streams (streams are physically “eaten” by
stream matching), parsing [< t; t >] will in fact parse t only once: the first occurrence of t will
be consumed, and the second occurrence will be empty before its parsing will be performed.

Interfacing streams with an input channel can be done with the function:

#stream_of_channel;;

- : in_channel -> char stream = <fun>

returning a stream of characters which are read from the channel argument. The end of stream
will coincide with the end of the file associated to the channel.

In the same way, one can build the character stream associated to a character string using:

#stream_of_string;;

- : string -> char stream = <fun>

#let s = stream_of_string "abc";;

s : char stream = <abstract>

11.1.2 Streams are lazily evaluated

Stream expressions are submitted to lazy evaluation, i.e. they are effectively build only when
required. This is useful in that it allows for the easy manipulation of “interactive” streams like the
stream built from the standard input. If this was not the case, i.e. if streams were immediately
completely computed, a program evaluating “stream_of_channel std_in” would read everything
up to an end-of-file on standard input before giving control to the rest of the program. Furthermore,
lazy evaluation of streams allows for the manipulation of infinite streams. As an example, we can
build the infinite stream of integers, using side effects to show precisely when computations occur:

#let rec ints_from n =

# [< ’(print_int n; print_char ‘ ‘; flush std_out; n);

# ints_from (n+1) >];;

ints_from : int -> int stream = <fun>

#let ints = ints_from 0;;

ints : int stream = <abstract>

We notice that no printing occurred and that the program terminates: this shows that none of
the elements have been evaluated and that the infinite stream has not been built. We will see in
the next section that these side-effects will occur on demand, i.e. when tests will be needed by a
matching function on streams.
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11.2 Stream matching and parsers

The syntax for building streams can be used for pattern-matching over them. However, stream
matching is more complex than the usual pattern matching.

11.2.1 Stream matching is destructive

Let us start with a simple example:

#let next = function [< ’x >] -> x;;

next : ’a stream -> ’a = <fun>

The next function returns the first element of its stream argument, and fails if the stream is empty:

#let s = [< ’0; ’1; ’2 >];;

s : int stream = <abstract>

#next s;;

- : int = 0

#next s;;

- : int = 1

#next s;;

- : int = 2

#next s;;

Uncaught exception: Parse_failure

We can see from the previous examples that the stream pattern [< ’x >] matches an initial
segment of the stream. Such a pattern must be read as “the stream whose first element matches
x”. Furthermore, once stream matching has succeeded, the stream argument has been physically
modified and does not contain any longer the part that has been recognized by the next function.

If we come back to the infinite stream of integers, we can see that the calls to next provoke the
evaluation of the necessary part of the stream:

#next ints; next ints; next ints;;

0 1 2 - : int = 2

Thus, successive calls to next remove the first elements of the stream until it becomes empty. Then,
next fails when applied to the empty stream, since, in the definition of next, there is no stream
pattern that matches an initial segment of the empty stream.

It is of course possible to specify several stream patterns as in:

#let next = function

# [< ’x >] -> x

#| [< >] -> raise (Failure "empty");;

next : ’a stream -> ’a = <fun>
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Cases are tried in turn, from top to bottom.
Stream pattern components are not restricted to quoted patterns (intended to match stream

elements), but can be also function calls (corresponding to non-terminals, in the grammar termi-
nology). Functions appearing as stream pattern components are intended to match substreams of
the stream argument: they are called on the actual stream argument, and they are followed by a
pattern which should match the result of this call. For example, if we define a parser recognizing
a non empty sequence of characters ‘a‘:

#let seq_a =

# let rec seq = function

# [< ’‘a‘; seq l >] -> ‘a‘::l

# | [< >] -> []

# in function [< ’‘a‘; seq l >] -> ‘a‘::l;;

seq_a : char stream -> char list = <fun>

we used the recursively defined function seq inside the stream pattern of the first rule. This
definition should be read as:

• if the stream is not empty and if its first element matches ‘a‘, apply seq to the rest of the
stream, let l be the result of this call and return ‘a‘::l,

• otherwise, fail (raise Parse_failure);

and seq should be read in the same way (except that, since it recognizes possibly empty sequences
of ‘a‘, it never fails).

Less operationally, we can read it as: “a non-empty sequence of ‘a‘ starts with an ‘a‘, and is
followed by a possibly empty sequence of ‘a‘.

Another example is the recognition of a non-empty sequence of ‘a‘ followed by a ‘b‘, or a ‘b‘

alone:

#let seq_a_b = function

# [< seq_a l; ’‘b‘ >] -> l@[‘b‘]

#| [< ’‘b‘ >] -> [‘b‘];;

seq_a_b : char stream -> char list = <fun>

Here, operationally, once an ‘a‘ has been recognized, the first matching rule is chosen. Any further
mismatch (either from seq_a or from the last ‘b‘) will raise a Parse_error exception, and the
whole parsing will fail. On the other hand, if the first character is not an ‘a‘, seq_a will raise
Parse_failure, and the second rule ([< ’‘b‘ >] -> ...) will be tried.

This behavior is typical of predictive parsers. Predictive parsing is recursive-descent parsing
with one look-ahead token. In other words, a predictive parser is a set of (possibly mutually
recursive) procedures, which are selected according to the shape of (at most) the first token.

11.2.2 Sequential binding in stream patterns

Bindings in stream patterns occur sequentially, in contrast with bindings in regular patterns, which
can be thought as occurring in parallel. Stream matching is guaranteed to be performed from left
to right. For example, computing the sum of the elements of an integer stream could be defined as:
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#let rec stream_sum n = function

# [< ’0; (stream_sum n) p >] -> p

#| [< ’x; (stream_sum (n+x)) p >] -> p

#| [< >] -> n;;

stream_sum : int -> int stream -> int = <fun>

#stream_sum 0 [< ’0; ’1; ’2; ’3; ’4 >];;

- : int = 10

The stream_sum function uses its first argument as an accumulator holding the sum computed
so far. The call (stream_sum (n+x)) uses x which was bound in the stream pattern component
occurring at the left of the call.

Warning: streams patterns are legal only in the function and match constructs. The let and
other forms are restricted to usual patterns. Furthermore, a stream pattern cannot appear inside
another pattern.

11.3 Parameterized parsers

Since a parser is a function like any other function, it can be parameterized or be used as a
parameter. Parameters used only in the right-hand side of stream-matching rules simulate inherited
attributes of attribute grammars. Parameters used as parsers in stream patterns allow for the
implementation of higher-order parsers. We will use the next example to motivate the introduction
of parameterized parsers.

11.3.1 Example: a parser for arithmetic expressions

Before building a parser for arithmetic expressions, we need a lexical analyzer able to recognize
arithmetic operations and integer constants. Let us first define a type for tokens:

#type token =

# PLUS | MINUS | TIMES | DIV | LPAR | RPAR

#| INT of int;;

Type token defined.

Skipping blank spaces is performed by the spaces function defined as:

#let rec spaces = function

# [< ’‘ ‘|‘\t‘|‘\n‘; spaces _ >] -> ()

#| [< >] -> ();;

spaces : char stream -> unit = <fun>

The conversion of a digit (character) into its integer value is done by:

#let int_of_digit = function

# ‘0‘..‘9‘ as c -> (int_of_char c) - (int_of_char ‘0‘)

#| _ -> raise (Failure "not a digit");;

int_of_digit : char -> int = <fun>
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The “as” keyword allows for naming a pattern: in this case, the variable c will be bound to the
actual digit matched by ‘0‘..‘9‘. Pattern built with as are called alias patterns.

For the recognition of integers, we already feel the need for a parameterized parser. Integer
recognition is done by the integer analyzer defined below. It is parameterized by a numeric value
representing the value of the first digits of the number:

#let rec integer n = function

# [< ’ ‘0‘..‘9‘ as c; (integer (10*n + int_of_digit c)) r >] -> r

#| [< >] -> n;;

integer : int -> char stream -> int = <fun>

#integer 0 (stream_of_string "12345");;

- : int = 12345

We are now ready to write the lexical analyzer, taking a stream of characters, and returning a
stream of tokens. Returning a token stream which will be explored by the parser is a simple,
reasonably efficient and intuitive way of composing a lexical analyzer and a parser.

#let rec lexer s = match s with

# [< ’‘(‘; spaces _ >] -> [< ’LPAR; lexer s >]

#| [< ’‘)‘; spaces _ >] -> [< ’RPAR; lexer s >]

#| [< ’‘+‘; spaces _ >] -> [< ’PLUS; lexer s >]

#| [< ’‘-‘; spaces _ >] -> [< ’MINUS; lexer s >]

#| [< ’‘*‘; spaces _ >] -> [< ’TIMES; lexer s >]

#| [< ’‘/‘; spaces _ >] -> [< ’DIV; lexer s >]

#| [< ’‘0‘..‘9‘ as c; (integer (int_of_digit c)) n; spaces _ >]

# -> [< ’INT n; lexer s >];;

lexer : char stream -> token stream = <fun>

We assume there is no leading space in the input.
Now, let us examine the language that we want to recognize. We shall have integers, infix

arithmetic operations and parenthesized expressions. The BNF form of the grammar is:

Expr ::= Expr + Expr

| Expr - Expr

| Expr * Expr

| Expr / Expr

| ( Expr )

| INT

The values computed by the parser will be abstract syntax trees (by contrast with concrete syntax,
which is the input string or stream). Such trees belong to the following type:

#type atree =

# Int of int

#| Plus of atree * atree

#| Minus of atree * atree

#| Mult of atree * atree

#| Div of atree * atree;;

Type atree defined.
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The Expr grammar is ambiguous. To make it unambiguous, we will adopt the usual precedences
for arithmetic operators and assume that all operators associate to the left. Now, to use stream
matching for parsing, we must take into account the fact that matching rules are chosen according
to the behavior of the first component of each matching rule. This is predictive parsing, and, using
well-known techniques, it is easy to rewrite the grammar above in such a way that writing the
corresponding predictive parser becomes trivial. These techniques are described in [2], and consist
in adding a non-terminal for each precedence level, and removing left-recursion. We obtain:

Expr ::= Mult

| Mult + Expr

| Mult - Expr

Mult ::= Atom

| Atom * Mult

| Atom / Mult

Atom ::= INT

| ( Expr )

While removing left-recursion, we forgot about left associativity of operators. This is not a problem,
as long as we build correct abstract trees.

Since stream matching bases its choices on the first component of stream patterns, we cannot
see the grammar above as a parser. We need a further transformation, factoring common prefixes
of grammar rules (left-factor). We obtain:

Expr ::= Mult RestExpr

RestExpr ::= + Mult RestExpr

| - Mult RestExpr

| (* nothing *)

Mult ::= Atom RestMult

RestMult ::= * Atom RestMult

| / Atom RestMult

| (* nothing *)

Atom ::= INT

| ( Expr )

Now, we can see this grammar as a parser (note that the order of rules becomes important, and
empty productions must appear last). The shape of the parser is:

let rec expr =

let rec restexpr ? = function

[< ’PLUS; mult ?; restexpr ? >] -> ?

| [< ’MINUS; mult ?; restexpr ? >] -> ?
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| [< >] -> ?

in function [< mult e1; restexpr ? >] -> ?

and mult =

let rec restmult ? = function

[< ’TIMES; atom ?; restmult ? >] -> ?

| [< ’DIV; atom ?; restmult ? >] -> ?

| [< >] -> ?

in function [< atom e1; restmult ? >] -> ?

and atom = function

[< ’INT n >] -> Int n

| [< ’LPAR; expr e; ’RPAR >] -> e

We used question marks where parameters, bindings and results still have to appear. Let us consider
the expr function: clearly, as soon as e1 is recognized, we must be ready to build the leftmost
subtree of the result. This leftmost subtree is either restricted to e1 itself, in case restexpr does
not encounter any operator, or it is the tree representing the addition (or subtraction) of e1 and
the expression immediately following the additive operator. Therefore, restexpr must be called
with e1 as an intermediate result, and accumulate subtrees built from its intermediate result, the
tree constructor corresponding to the operator and the last expression encountered. The body of
expr becomes:

let rec expr =

let rec restexpr e1 = function

[< ’PLUS; mult e2; restexpr (Plus (e1,e2)) e >] -> e

| [< ’MINUS; mult e2; restexpr (Minus (e1,e2)) e >] -> e

| [< >] -> e1

in function [< mult e1; (restexpr e1) e2 >] -> e2

Now, expr recognizes a product e1 (by mult), and applies (restexpr e1) to the rest of the stream.
According to the additive operator encountered (if any), this function will apply mult which will
return some e2. Then the process continues with Plus(e1,e2) as intermediate result. In the end,
a correctly balanced tree will be produced (using the last rule of restexpr).

With the same considerations on mult and restmult, we can complete the parser, obtaining:

#let rec expr =

# let rec restexpr e1 = function

# [< ’PLUS; mult e2; (restexpr (Plus (e1,e2))) e >] -> e

# | [< ’MINUS; mult e2; (restexpr (Minus (e1,e2))) e >] -> e

# | [< >] -> e1

#in function [< mult e1; (restexpr e1) e2 >] -> e2

#

#and mult =

# let rec restmult e1 = function

# [< ’TIMES; atom e2; (restmult (Mult (e1,e2))) e >] -> e

# | [< ’DIV; atom e2; (restmult (Div (e1,e2))) e >] -> e
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# | [< >] -> e1

#in function [< atom e1; (restmult e1) e2 >] -> e2

#

#and atom = function

# [< ’INT n >] -> Int n

#| [< ’LPAR; expr e; ’RPAR >] -> e;;

expr : token stream -> atree = <fun>

mult : token stream -> atree = <fun>

atom : token stream -> atree = <fun>

And we can now try our parser:

#expr (lexer (stream_of_string "(1+2+3*4)-567"));;

- : atree = Minus (Plus (Plus (Int 1, Int 2), Mult (Int 3, Int 4)), Int 567)

11.3.2 Parameters simulating inherited attributes

In the previous example, the parsers restexpr and restmult take an abstract syntax tree e1 as ar-
gument and pass it down to the result through recursive calls such as (restexpr (Plus(e1,e2))).
If we see such parsers as non-terminals (RestExpr from the grammar above) this parameter acts as
an inherited attribute of the non-terminal. Synthesized attributes are simulated by the right hand
sides of stream matching rules.

11.3.3 Higher-order parsers

In the definition of expr, we may notice that the parsers expr and mult on the one hand and
restexpr and restmult on the other hand have exactly the same structure. To emphasize this
similarity, if we define parsers for additive (resp. multiplicative) operators by:

#let addop = function

# [< ’PLUS >] -> (function (x,y) -> Plus(x,y))

#| [< ’MINUS >] -> (function (x,y) -> Minus(x,y))

#and multop = function

# [< ’TIMES >] -> (function (x,y) -> Mult(x,y))

#| [< ’DIV >] -> (function (x,y) -> Div(x,y));;

addop : token stream -> atree * atree -> atree = <fun>

multop : token stream -> atree * atree -> atree = <fun>

we can rewrite the expr parser as:

#let rec expr =

# let rec restexpr e1 = function

# [< addop f; mult e2; (restexpr (f (e1,e2))) e >] -> e

# | [< >] -> e1

#in function [< mult e1; (restexpr e1) e2 >] -> e2

#

#and mult =
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# let rec restmult e1 = function

# [< multop f; atom e2; (restmult (f (e1,e2))) e >] -> e

# | [< >] -> e1

#in function [< atom e1; (restmult e1) e2 >] -> e2

#

#and atom = function

# [< ’INT n >] -> Int n

#| [< ’LPAR; expr e; ’RPAR >] -> e;;

expr : token stream -> atree = <fun>

mult : token stream -> atree = <fun>

atom : token stream -> atree = <fun>

Now, we take advantage of these similarities in order to define a general parser for left-associative
operators. Its name is left_assoc and is parameterized by a parser for operators and a parser for
expressions:

#let rec left_assoc op term =

# let rec rest e1 = function

# [< op f; term e2; (rest (f (e1,e2))) e >] -> e

# | [< >] -> e1

# in function [< term e1; (rest e1) e2 >] -> e2;;

left_assoc : (’a stream -> ’b * ’b -> ’b) -> (’a stream -> ’b) -> ’a stream -> ’

b = <fun>

Now, we can redefine expr as:

#let rec expr str = left_assoc addop mult str

#and mult str = left_assoc multop atom str

#and atom = function

# [< ’INT n >] -> Int n

#| [< ’LPAR; expr e; ’RPAR >] -> e;;

expr : token stream -> atree = <fun>

mult : token stream -> atree = <fun>

atom : token stream -> atree = <fun>

And we can now try our definitive parser:

#expr (lexer (stream_of_string "(1+2+3*4)-567"));;

- : atree = Minus (Plus (Plus (Int 1, Int 2), Mult (Int 3, Int 4)), Int 567)

Parameterized parsers are useful for defining general parsers such as left_assoc that can be used
with different instances. Another example of a useful general parser is the star parser defined as:

#let rec star p = function

# [< p x; (star p) l >] -> x::l

#| [< >] -> [];;

star : (’a stream -> ’b) -> ’a stream -> ’b list = <fun>
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The star parser iterates zero or more times its argument p and returns the list of results. We still
have to be careful in using these general parsers because of the predictive nature of parsing. For
example, star p will never successfully terminate if p has a rule for the empty stream pattern: this
rule will make the second rule of star useless!

11.3.4 Example: parsing a non context-free language

As an example of parsing with parameterized parsers, we shall build a parser for the language
{wCw | w ∈ (A|B)∗}, which is known to be non context-free.

First, let us define a type for this alphabet:

#type token = A | B | C;;

Type token defined.

Given an input of the form wCw, the idea for a parser recognizing it is:

• first, to recognize the sequence w with a parser wd (for word definition) returning information
in order to build a parser recognizing only w;

• then to recognize C;

• and to use the parser built at the first step to recognize the sequence w.

The definition of wd is as follows:

#let rec wd = function

# [< ’A; wd l >] -> (function [< ’A >] -> "a")::l

#| [< ’B; wd l >] -> (function [< ’B >] -> "b")::l

#| [< >] -> [];;

wd : token stream -> (token stream -> string) list = <fun>

The wu function (for word usage) builds a parser sequencing a list of parsers:

#let rec wu = function

# p::pl -> (function [< p x; (wu pl) l >] -> x^l)

#| [] -> (function [< >] -> "");;

wu : (’a stream -> string) list -> ’a stream -> string = <fun>

The wu function builds, from a list of parsers pi, for i = 1..n, a single parser

function [<p1 x1;. . . ;pn xn>] -> [x1;. . . ;xn]

which is the sequencing of parsers pi. The main parser w is:

#let w = function [< wd l; ’C; (wu l) r >] -> r;;

w : token stream -> string = <fun>

#w [< ’A; ’B; ’B; ’C; ’A; ’B; ’B >];;

- : string = "abb"

#w [< ’C >];;

- : string = ""
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In the previous parser, we used an intermediate list of parsers in order to build the second
parser. We can redefine wd without using such a list:

#let w =

# let rec wd wr = function

# [< ’A; (wd (function [< wr r; ’A >] -> r^"a")) p >] -> p

# | [< ’B; (wd (function [< wr r; ’B >] -> r^"b")) p >] -> p

# | [< >] -> wr

# in function [< (wd (function [< >] -> "")) p; ’C; p str >] -> str;;

w : token stream -> string = <fun>

#w [< ’A; ’B; ’B; ’C; ’A; ’B; ’B >];;

- : string = "abb"

#w [< ’C >];;

- : string = ""

Here, wd is made local to w, and takes as parameter wr (for word recognizer) whose initial value is
the parser with an empty stream pattern. This parameter accumulates intermediate results, and
is delivered at the end of parsing the initial sequence w. After checking for the presence of C, it is
used to parse the second sequence w.

11.4 Further reading

A summary of the constructs over streams is given 24.1. Primitives on streams are described in
section 21.14.

An alternative to parsing with streams and stream matching are the camllex and camlyacc

programs. They are described in chapter 29.
A detailed presentation of streams and stream matching following “predictive parsing” semantics

can be found in [23], where alternative semantics are given with some possible implementations.

Exercises

11.1 Define a parser for the language of prefix arithmetic expressions generated by the grammar:

Expr ::= INT

| + Expr Expr

| - Expr Expr

| * Expr Expr

| / Expr Expr

Use the lexical analyzer for arithmetic expressions given above. The result of the parser must be
the integer resulting from the evaluation of the arithmetic expression, i.e. its type must be:

token -> int

11.2 Enrich the type token above with a constructor IDENT of string for identifiers, and enrich
the lexical analyzer for it to recognize identifiers built from alphabetic letters (upper or lowercase).
Length of identifiers may be limited. A look at primitives on strings is necessary (section 21.15).



Chapter 12

Standalone programs and separate
compilation

So far, we have used Caml Light in an interactive way. It is also possible to program in Caml
Light in a batch-oriented way: writing source code in a file, having it compiled into an executable
program, and executing the program outside of the Caml Light environment. Interactive use is
great for learning the language and quickly testing new functions. Batch use is more convenient to
develop larger programs, that should be usable without knowledge of Caml Light.

Mac: Batch compilation is not available in the standalone Caml Light application. It requires the
MPW environment (see chapter 1).

12.1 Standalone programs

Standalone programs are composed of a sequence of phrases, contained in one or several text files.
Phrases are the same as at toplevel: expressions, value declarations, type declarations, exception
declarations, and directives. When executing the stand-alone program produced by the compiler,
all phrases are executed in order. The values of expressions and declared global variables are not
printed, however. A stand-alone program has to perform input and output explicitly.

Here is a sample program, that prints the number of characters and the number of lines of its
standard input, like the wc Unix utility.

let chars = ref 0;;

let lines = ref 0;;

try

while true do

let c = input_char std_in in

chars := !chars + 1;

if c = ‘\n‘ then lines := !lines + 1 else ()

done

with End_of_file ->

print_int !chars; print_string " characters, ";

print_int !lines; print_string " lines.\n";

95
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exit 0

;;

The input_char function reads the next character from an input channel (here, std_in, the
channel connected to standard input). It raises exception End_of_file when reaching the end
of the file. The exit function aborts the process. Its argument is the exit status of the process.
Calling exit is absolutely necessary to ensure proper flushing of the output channels.

Assume this program is in file count.ml. To compile it, simply run the camlc command from
the command interpreter:

camlc -o count count.ml

The compiler produces an executable file count. You can now run count with the help of the
”camlrun” command:

camlrun count < count.ml

This should display something like:

306 characters, 13 lines.

Under Unix, the count file can actually be executed directly, just like any other Unix command,
as in:

./count < count.ml

This also works under MS-DOS, provided the executable file is given extension .exe. That is, if
we compile count.ml as follows:

camlc -o count.exe count.ml

we can run count.exe directly, as in:

count.exe < count.ml

See chapter 25 for more information on camlc.

12.2 Programs in several files

It is possible to split one program into several source files, separately compiled. This way, local
changes do not imply a full recompilation of the program. Let us illustrate that on the previous
example. We split it in two modules: one that implements integer counters; another that performs
the actual counting. Here is the first one, counter.ml:

(* counter.ml *)

type counter = { mutable val: int };;

let new init = { val = init };;

let incr c = c.val <- c.val + 1;;

let read c = c.val;;
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Here is the source for the main program, in file main.ml.

(* main.ml *)

let chars = counter__new 0;;

let lines = counter__new 0;;

try

while true do

let c = input_char std_in in

counter__incr chars;

if c = ‘\n‘ then counter__incr lines else ()

done

with End_of_file ->

print_int (counter__read chars); print_string " characters, ";

print_int (counter__read lines); print_string " lines.\n";

exit 0

;;

Notice that references to identifiers defined in module counter.ml are prefixed with the name of
the module, counter, and by __ (the “long dash” symbol: two underscore characters). If we had
simply entered new 0, for instance, the compiler would have assumed new is an identifier declared
in the current module, and issued an “undefined identifier” error.

Compiling this program requires two compilation steps, plus one final linking step.

camlc -c counter.ml

camlc -c main.ml

camlc -o main counter.zo main.zo

Running the program is done as before:

camlrun main < counter.ml

The -c option to camlcmeans “compile only”; that is, the compiler should not attempt to produce a
stand-alone executable program from the given file, but simply an object code file (files counter.zo,
main.zo). The final linking phases takes the two .zo files and produces the executable main. Object
files must be linked in the right order: for each global identifier, the module defining it must come
before the modules that use it.

Prefixing all external identifiers by the name of their defining module is sometimes tedious.
Therefore, the Caml Light compiler provides a mechanism to omit the module__ part in external
identifiers. The system maintains a list of “default” modules, called the currently opened modules,
and whenever it encounters an identifier without the module__ part, it searches through the opened
modules, to find one that defines this identifier. Searched modules always include the module being
compiled (searched first), and some library modules of general use. In addition, two directives are
provided to add and to remove modules from the list of opened modules:

• #open "module";; to add module in front of the list;

• #close "module";; to remove module from the list.
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For instance, we can rewrite the main.ml file above as:

#open "counter";;

let chars = new 0;;

let lines = new 0;;

try

while true do

let c = input_char std_in in

incr chars;

if c = ‘\n‘ then incr lines

done

with End_of_file ->

print_int (read chars);

print_string " characters, ";

print_int (read lines);

print_string " lines.\n";

exit 0

;;

After the #open "counter" directive, the identifier new automatically resolves to counters__new.
If two modules, say mod1 and mod2, define both a global value f, then f in a client module

client resolves to mod1__f if mod1 is opened but not mod2, or if mod1 has been opened more
recently than mod2. Otherwise, it resolves to mod2__f. For instance, the two system modules int
and float both define the infix identifier +. Both modules int and float are opened by default,
but int comes first. Hence, x + y is understood as the integer addition, since + is resolved to
int__+. But after the directive #open "float";;, module float comes first, and the identifier +
is resolved to float__+.

12.3 Abstraction

Some globals defined in a module are not intended to be used outside of this module. Then, it is
good programming style not to export them outside of the module, so that the compiler can check
they are not used in another module. Also, one may wish to export a data type abstractly, that
is, without publicizing the structure of the type. This ensures that other modules cannot build or
inspect objects of that type without going through one of the functions on that type exported in
the defining module. This helps in writing clean, well-structured programs.

The way to do that in Caml Light is to write an explicit interface, or output signature, specifying
those identifiers that are visible from the outside. All other identifiers will remain local to the
module. For global values, their types must be given by hand. The interface is contained in a file
whose name is the module name, with extension .mli.

Here is for instance an interface for the counter module, that abstracts the type counter:

(* counter.mli *)

type counter;; (* an abstract type *)

value new : int -> counter

and incr : counter -> unit

and read : counter -> int;;
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Interfaces must be compiled separately. However, once the interface for module A has been
compiled, any module B that uses A can be immediately compiled, even if the implementation of
A is not yet compiled or even not yet written. Consider:

camlc -c counter.mli

camlc -c main.ml

camlc -c counter.ml

camlc -o main counter.zo main.zo

The implementation main.ml could be compiled before counter.ml. The only requirement for
compiling main.ml is the existence of counter.zi, the compiled interface of the counter module.

Exercises

12.1 Complete the count command: it should be able to operate on several files, given on the
command line. Hint: sys__command_line is an array of strings, containing the command-line
arguments to the process.
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Part C
A complete example
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Chapter 13

ASL: A Small Language

We present in this chapter a simple language: ASL (A Small Language). This language is basically
the λ-calculus (the purely functional kernel of Caml) enriched with a conditional construct. The
conditional must be a special construct, because our language will be submitted to call-by-value:
thus, the conditional cannot be a function.

ASL programs are built up from numbers, variables, functional expressions (λ-abstractions),
applications and conditionals. An ASL program consists of a global declaration of an identifier
getting bound to the value of an expression. The primitive functions that are available are equality
between numbers and arithmetic binary operations. The concrete syntax of ASL expressions can
be described (ambiguously) as:

Expr ::= INT

| IDENT

| "if" Expr "then" Expr "else" Expr "fi"

| "(" Expr ")"

| "\" IDENT "." Expr

and the syntax of declarations is given as:

Decl ::= "let" IDENT "be" Expr ";"

| Expr ";"

Arithmetic binary operations will be written in prefix position and will belong to the class IDENT.
The \ symbol will play the role of the Caml keyword function.

We start by defining the abstract syntax of ASL expressions and of ASL toplevel phrases. Then
we define a parser in order to produce abstract syntax trees from the concrete syntax of ASL
programs.

13.1 ASL abstract syntax trees

We encode variable names by numbers. These numbers represent the binding depth of variables.
For instance, the function of x returning x (the ASL identity function) will be represented as:

Abs("x", Var 1)
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And the ASL application function which would be written in Caml:

(function f -> (function x -> f(x)))

would be represented as:

Abs("f", Abs("x", App(Var 2, Var 1)))

and should be viewed as the tree:

Var n should be read as “an occurrence of the variable bound by the nth abstraction node encoun-
tered when going toward the root of the abstract syntax tree”. In our example, when going from
Var 2 to the root, the 2nd abstraction node we encounter introduces the "f" variable.

The numbers encoding variables in abstract syntax trees of functional expressions are called
“De Bruijn1 numbers”. The characters that we attach to abstraction nodes simply serve as docu-
mentation: they will not be used by any of the semantic analyses that we will perform on the trees.
The type of ASL abstract syntax trees is defined by:

#type asl = Const of int

# | Var of int

# | Cond of asl * asl * asl

# | App of asl * asl

# | Abs of string * asl

#

#and top_asl = Decl of string * asl;;

Type asl defined.

Type top_asl defined.

13.2 Parsing ASL programs

Now we come to the problem of defining a concrete syntax for ASL programs and declarations.
The choice of the concrete aspect of the programs is simply a matter of taste. The one we choose

here is close to the syntax of λ-calculus (except that we will use the backslash character because
there is no “λ” on our keyboards). We will use the curried versions of equality and arithmetic
functions. We will also use a prefix notation (à la Lisp) for their application. We will write “+ (+

1They have been proposed by N.G. De Bruijn in [10] in order to facilitate the mechanical treatment of λ-calculus
terms.
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1 2) 3” instead of “(1+2)+3”. The “if e1 then e2 else e3” construct will be written “if e1
then e2 else e3 fi”, and will return the then part when e1 is different from 0 (0 acts thus as
falsity in ASL conditionals).

13.2.1 Lexical analysis

The concrete aspect of ASL programs will be either declarations of the form:

let identifier be expression;

or:

expression;

which will be understood as:

let it be expression;

The tokens produced by the lexical analyzer will represent the keywords let, be, if and else, the \
binder, the dot, parentheses, integers, identifiers, arithmetic operations and terminating semicolons.
We reuse here most of the code that we developed in chapter 11 or in the answers to its exercises.

Skipping blank spaces:

#let rec spaces = function

# [< ’‘ ‘|‘\t‘|‘\n‘; spaces _ >] -> ()

#| [< >] -> ();;

spaces : char stream -> unit = <fun>

The type of tokens is given by:

#type token = LET | BE | LAMBDA | DOT | LPAR | RPAR

# | IF | THEN | ELSE | FI | SEMIC

# | INT of int | IDENT of string;;

Type token defined.

Integers:

#let int_of_digit = function

# ‘0‘..‘9‘ as c -> (int_of_char c) - (int_of_char ‘0‘)

#| _ -> raise (Failure "not a digit");;

int_of_digit : char -> int = <fun>

#let rec integer n = function

# [< ’ ‘0‘..‘9‘ as c; (integer (10*n + int_of_digit c)) r >] -> r

#| [< >] -> INT n;;

integer : int -> char stream -> token = <fun>

We restrict ASL identifiers to be composed of lowercase letters, the eight first being significative.
An explanation about the ident function can be found in the chapter dedicated to the answers to
exercises (chapter 18). The function given here is slightly different and tests its result in order to
see wether it is a keyword (let, be, . . . ) or not:
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#let ident_buf = make_string 8 ‘ ‘;;

ident_buf : string = " "

#let rec ident len = function

# [< ’ ‘a‘..‘z‘ as c;

# (if len >= 8 then ident len

# else begin

# set_nth_char ident_buf len c;

# ident (succ len)

# end) s >] -> s

#| [< >] -> (match sub_string ident_buf 0 len

# with "let" -> LET

# | "be" -> BE

# | "if" -> IF

# | "then" -> THEN

# | "else" -> ELSE

# | "fi" -> FI

# | s -> IDENT s);;

ident : int -> char stream -> token = <fun>

A reasonable lexical analyzer would use a hash table (see section 22.3, part IV) to recognize key-
words faster.

Primitive operations are recognized by the following function, which also detects illegal operators
and ends of input:

#let oper = function

# [< ’‘+‘|‘-‘|‘*‘|‘/‘|‘=‘ as c >] -> IDENT(make_string 1 c)

#| [< ’c >] -> prerr_string "Illegal character: ";

# prerr_endline (char_for_read c);

# raise (Failure "ASL parsing")

#| [< >] -> prerr_endline "Unexpected end of input";

# raise (Failure "ASL parsing");;

oper : char stream -> token = <fun>

The lexical analyzer has the same structure as the one given in chapter 11 except that leading
blanks are skipped.

#let rec lexer str = spaces str;

#match str with

# [< ’‘(‘; spaces _ >] -> [< ’LPAR; lexer str >]

#| [< ’‘)‘; spaces _ >] -> [< ’RPAR; lexer str >]

#| [< ’‘\\‘; spaces _ >] -> [< ’LAMBDA; lexer str >]

#| [< ’‘.‘; spaces _ >] -> [< ’DOT; lexer str >]

#| [< ’‘;‘; spaces _ >] -> [< ’SEMIC; lexer str >]

#| [< ’‘0‘..‘9‘ as c;

# (integer (int_of_digit c)) tok;

# spaces _ >] -> [< ’tok; lexer str >]
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#| [< ’‘a‘..‘z‘ as c;

# (set_nth_char ident_buf 0 c; ident 1) tok;

# spaces _ >] -> [< ’tok; lexer str >]

#| [< oper tok; spaces _ >] -> [< ’tok; lexer str >]

#;;

lexer : char stream -> token stream = <fun>

The lexical analyzer returns a stream of tokens that the parser will receive as argument.

13.2.2 Parsing

The final output of our parser will be abstract syntax trees of type asl or top_asl. This implies
that we will detect unbound identifiers at parse-time. In this case, we will raise the Unbound

exception defined as:

#exception Unbound of string;;

Exception Unbound defined.

We also need a function which will compute the binding depths of variables. That function simply
looks for the position of the first occurrence of a variable name in a list. It will raise Unbound if
there is no such occurrence.

#let binding_depth s rho =

# bind 1 rho

# where rec bind n = function

# [] -> raise (Unbound s)

# | t::l -> if s = t then Var n else bind (n+1) l;;

binding_depth : string -> string list -> asl = <fun>

We also need a global environment, containing names of already bound identifiers. The global
environment contains predefined names for the equality and arithmetic functions. We represent
the global environment as a reference since each ASL declaration will augment it with a new name.

#let init_env = ["+";"-";"*";"/";"="];;

init_env : string list = ["+"; "-"; "*"; "/"; "="]

#let global_env = ref init_env;;

global_env : string list ref = ref ["+"; "-"; "*"; "/"; "="]

We now give a parsing function for ASL programs. Blanks at the beginning of the string are
skipped.

#let rec top = function

# [< ’LET; ’IDENT id; ’BE; expression e; ’SEMIC >] -> Decl(id,e)

# | [< expression e; ’SEMIC >] -> Decl("it",e)

#

#and expression = function

# [< (expr !global_env) e >] -> e

#
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#and expr rho =

# let rec rest e1 = function

# [< (atom rho) e2; (rest (App(e1,e2))) e >] -> e

# | [< >] -> e1

# in function

# [< ’LAMBDA; ’IDENT id; ’DOT; (expr (id::rho)) e >] -> Abs(id,e)

# | [< (atom rho) e1; (rest e1) e2 >] -> e2

#

#and atom rho = function

# [< ’IDENT id >] ->

# (try binding_depth id rho with Unbound s ->

# print_string "Unbound ASL identifier: ";

# print_string s; print_newline();

# raise (Failure "ASL parsing"))

# | [< ’INT n >] -> Const n

# | [< ’IF; (expr rho) e1; ’THEN; (expr rho) e2;

# ’ELSE; (expr rho) e3; ’FI >] -> Cond(e1,e2,e3)

# | [< ’LPAR; (expr rho) e; ’RPAR >] -> e;;

top : token stream -> top_asl = <fun>

expression : token stream -> asl = <fun>

expr : string list -> token stream -> asl = <fun>

atom : string list -> token stream -> asl = <fun>

The complete parser that we will use reads a string, converts it into a stream, and produces the
token stream that is parsed:

#let parse_top s = top(lexer(stream_of_string s));;

parse_top : string -> top_asl = <fun>

Let us try our grammar (we do not augment the global environment at each declaration: this will
be performed after the semantic treatment of ASL programs). We need to write double \ inside
strings, since \ is the string escape character.

#parse_top "let f be \\x.x;";;

- : top_asl = Decl ("f", Abs ("x", Var 1))

#parse_top "let x be + 1 ((\\x.x) 2);";;

- : top_asl = Decl ("x", App (App (Var 1, Const 1), App (Abs ("x", Var 1), Const

2)))

Unbound identifiers and undefined operators are correctly detected:

#parse_top "let y be g 3;";;

Unbound ASL identifier: g

Uncaught exception: Failure "ASL parsing"

#parse_top "f (if 0 then + else - fi) 2 3;";;

Unbound ASL identifier: f

Uncaught exception: Failure "ASL parsing"
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#parse_top "^ x y;";;

Illegal character: ^

Uncaught exception: Failure "ASL parsing"
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Chapter 14

Untyped semantics of ASL programs

In this section, we give a semantic treatment of ASL programs. We will use dynamic typechecking,
i.e. we will test the type correctness of programs during their interpretation.

14.1 Semantic values

We need a type for ASL semantic values (representing results of computations). A semantic value
will be either an integer, or a Caml functional value from ASL values to ASL values.

#type semval = Constval of int

# | Funval of (semval -> semval);;

Type semval defined.

We now define two exceptions. The first one will be used when we encounter an ill-typed program
and will represent run-time type errors. The other one is helpful for debugging: it will be raised
when our interpreter (semantic function) goes into an illegal situation.

The following two exceptions will be raised in case of run-time ASL type error, and in case of
bug of our semantic treatment:

#exception Illtyped;;

Exception Illtyped defined.

#exception SemantBug of string;;

Exception SemantBug defined.

We must give a semantic value to our basic functions (equality and arithmetic operations). The
next function transforms a Caml function into an ASL value.

#let init_semantics caml_fun =

# Funval

# (function Constval n ->

# Funval(function Constval m -> Constval(caml_fun n m)

# | _ -> raise Illtyped)

# | _ -> raise Illtyped);;

init_semantics : (int -> int -> int) -> semval = <fun>
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Now, associate a Caml Light function to each ASL predefined function:

#let caml_function = function

# "+" -> prefix +

# | "-" -> prefix -

# | "*" -> prefix *

# | "/" -> prefix /

# | "=" -> (fun n m -> if n=m then 1 else 0)

# | s -> raise (SemantBug "Unknown primitive");;

caml_function : string -> int -> int -> int = <fun>

In the same way as, for parsing, we needed a global environment from which the binding depth of
identifiers was computed, we need a semantic environment from which the interpreter will fetch the
value represented by identifiers. The global semantic environment will be a reference on the list of
predefined ASL values.

#let init_sem = map (fun x -> init_semantics(caml_function x))

# init_env;;

init_sem : semval list = [Funval <fun>; Funval <fun>; Funval <fun>; Funval <fun>

; Funval <fun>]

#let global_sem = ref init_sem;;

global_sem : semval list ref = ref [Funval <fun>; Funval <fun>; Funval <fun>; Fu

nval <fun>; Funval <fun>]

14.2 Semantic functions

The semantic function is the interpreter itself. There is one for expressions and one for declarations.
The one for expressions computes the value of an ASL expression from an environment rho. The
environment will contain the values of globally defined ASL values or of temporary ASL values.
It is organized as a list, and the numbers representing variable occurrences will be used as indices
into the environment.

#let rec nth n = function

# [] -> raise (Failure "nth")

# | x::l -> if n=1 then x else nth (n-1) l;;

nth : int -> ’a list -> ’a = <fun>

#let rec semant rho = sem

# where rec sem = function

# Const n -> Constval n

# | Var(n) -> nth n rho

# | Cond(e1,e2,e3) ->

# (match sem e1 with Constval 0 -> sem e3

# | Constval n -> sem e2

# | _ -> raise Illtyped)

# | Abs(_,e’) -> Funval(fun x -> semant (x::rho) e’)



Chapter 14. Untyped semantics of ASL programs 113

# | App(e1,e2) -> (match sem e1

# with Funval(f) -> f (sem e2)

# | _ -> raise Illtyped)

#;;

semant : semval list -> asl -> semval = <fun>

The main function must be able to treat an ASL declaration, evaluate it, and update the global
environments (global_env and global_sem).

#let semantics = function Decl(s,e) ->

# let result = semant !global_sem e

# in global_env := s::!global_env;

# global_sem := result::!global_sem;

# print_string "ASL Value of ";

# print_string s;

# print_string " is ";

# (match result with

# Constval n -> print_int n

# | Funval f -> print_string "<fun>");

# print_newline();;

semantics : top_asl -> unit = <fun>

14.3 Examples

#semantics (parse_top "let f be \\x. + x 1;");;

ASL Value of f is <fun>

- : unit = ()

#semantics (parse_top "let i be \\x. x;");;

ASL Value of i is <fun>

- : unit = ()

#semantics (parse_top "let x be i (f 2);");;

ASL Value of x is 3

- : unit = ()

#semantics (parse_top "let y be if x then (\\x.x) else 2 fi 0;");;

ASL Value of y is 0

- : unit = ()
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Chapter 15

Encoding recursion

15.1 Fixpoint combinators

We have seen that we do not have recursion in ASL. However, it is possible to encode recursion by
defining a fixpoint combinator. A fixpoint combinator is a function F such that:

F M is equivalent to M (F M) modulo the evaluation rules.

for any expression M . A consequence of the equivalence given above is that fixpoint combinators
can encode recursion. Let us note M ≡ N if expressions M and N are equivalent modulo the
evaluation rules. Then, consider ffact to be the functional obtained from the body of the factorial
function by abstracting (i.e. using as a parameter) the fact identifier, and fix an arbitrary fixpoint
combinator. We have:

ffact is \fact.(\n. if = n 0 then 1 else * n (fact (- n 1)) fi)

Now, let us consider the expression E = (fix ffact) 3. Using our intuition about the evaluation
rules, and the definition of a fixpoint combinator, we obtain:
E ≡ ffact (fix ffact) 3

Replacing ffact by its definition, we obtain:
E ≡ (\fact.(\n. if = n 0 then 1 else * n (fact (- n 1)) fi)) (fix ffact) 3

We can now pass the two arguments to the first abstraction, instantiating fact and n respectively
to fix ffact and 3:
E ≡ if = 3 0 then 1 else * 3 (fix ffact (- 3 1)) fi

We can now reduce the conditional into its else branch:
E ≡ * 3 (fix ffact (- 3 1))

Continuing this way, we eventually compute:
E ≡ * 3 (* 2 (* 1 1)) ≡ 6

This is the expected behavior of the factorial function. Given an appropriate fixpoint combinator
fix, we could define the factorial function as fix ffact, where ffact is the expression above.

Unfortunately, when using call-by-value, any application of a fixpoint combinator F such that:

F M evaluates to M (F M)

leads to non-termination of the evaluation (because evaluation of (F M) leads to evaluating
(M (F M)), and thus (F M) again).
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We will use the Z fixpoint combinator defined by:

Z = λf.((λx. f (λy. (x x) y))(λx. f (λy. (x x) y)))

The fixpoint combinator Z has the particularity of being usable under call-by-value evaluation
regime (in order to check that fact, it is necessary to know the evaluation rules of λ-calculus).
Since the name z looks more like an ordinary parameter name, we will call fix the ASL expression
corresponding to the Z fixpoint combinator.

#semantics (parse_top

# "let fix be \\f.((\\x.f(\\y.(x x) y))(\\x.f(\\y.(x x) y)));");;

ASL Value of fix is <fun>

- : unit = ()

We are now able to define the ASL factorial function:

#semantics (parse_top

# "let fact be fix (\\f.(\\n. if = n 0 then 1

# else * n (f (- n 1)) fi));");;

ASL Value of fact is <fun>

- : unit = ()

#semantics (parse_top "fact 8;");;

ASL Value of it is 40320

- : unit = ()

and the ASL Fibonacci function:

#semantics (parse_top

# "let fib be fix (\\f.(\\n. if = n 1 then 1

# else if = n 2 then 1

# else + (f (- n 1)) (f (- n 2)) fi fi));");;

ASL Value of fib is <fun>

- : unit = ()

#semantics (parse_top "fib 9;");;

ASL Value of it is 34

- : unit = ()

15.2 Recursion as a primitive construct

Of course, in a more realistic prototype, we would extend the concrete and abstract syntaxes of
ASL in order to support recursion as a primitive construct. We do not do it here because we want
to keep ASL simple. This is an interesting non trivial exercise!



Chapter 16

Static typing, polymorphism and
type synthesis

We now want to perform static typechecking of ASL programs, that is, to complete typechecking
before evaluation, making run-time type tests unnecessary during evaluation of ASL programs.

Furthermore, we want to have polymorphism (i.e. allow the identity function, for example, to
be applicable to any kind of data).

Type synthesis may be seen as a game. When learning a game, we must:

• learn the rules (what is allowed, and what is forbidden);

• learn a winning strategy.

In type synthesis, the rules of the game are called a type system, and the winning strategy is
the typechecking algorithm.

In the following sections, we give the ASL type system, the algorithm and an implementation
of that algorithm. Most of this presentation is borrowed from [7].

16.1 The type system

We study in this section a type system for the ASL language. Then, we present an algorithm
performing the type synthesis of ASL programs, and its Caml Light implementation. Because
of subtle aspects of the notation used (inference rules), and since some important mathematical
notions, such as unification of first-order terms, are not presented here, this chapter may seem
obscure at first reading.

The type system we will consider for ASL has been first given by Milner [25] for a subset of the
ML language (in fact, a superset of λ-calculus). A type is either:

• the type Number;

• or a type variable (α, β, . . . );

• or τ1 → τ2, where τ1 and tau2 are types.
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In a type, a type variable is an unknown, i.e. a type that we are computing. We will use τ , τ ′,
τ1, . . . , as metavariables1 representing types. This notation is important: we shall use other greek
letters to denote other notions in the following sections.

Example (α→ Number)→ β → β is a type.

✷

A type scheme, is a type where some variables are distinguished as being generic. We can
represent type schemes by:

∀α1, . . . , αn.τ where τ is a type.

Example ∀α.(α→ Number)→ β → β and (α→ Number)→ β → β are type schemes.

✷

We will use σ, σ′, σ1, . . . , as metavariables representing type schemes. We may also write type
schemes as ∀~α.τ . In this case, ~α represent a (possibly empty) set of generic type variables. When
the set of generic variables is empty, we write ∀.τ or simply τ .

We will write FV (σ) for the set of unknowns occurring in the type scheme σ. Unknowns are
also called free variables (they are not bound by a ∀ quantifier).

We also write BV (σ) (bound type variables of σ) for the set of type variables occurring in σ

which are not free (i.e. the set of variables universally quantified). Bound type variables are also
said to be generic.

Example If σ denotes the type scheme ∀α.(α→ Number)→ β → β, then we have:

FV (σ) = {β}

and

BV (σ) = {α}

✷

A substitution instance σ′ of a type scheme σ is the type scheme S(σ) where S is a substitution
of types for free type variables appearing in σ. When applying a substitution to a type scheme, a
renaming of some bound type variables may become necessary, in order to avoid the capture of a
free type variable by a quantifier.

Example

• If σ denotes ∀β.(β → α)→ α and σ′ is ∀β.(β → (γ → γ))→ (γ → γ), then σ′ is a substitution
instance of σ because σ′ = S(σ) where S = {α← (γ → γ)}, i.e. S substitutes the type γ → γ

for the variable α.

• If σ denotes ∀β.(β → α)→ α and σ′ is ∀δ.(δ → (β → β))→ (β → β), then σ′ is a substitution
instance of σ because σ′ = S(σ) where S = {α ← (β → β)}. In this case, the renaming of β
into δ was necessary: we did not want the variable β introduced by S to be captured by the
universal quantification ∀β.

1A metavariable should not be confused with a variable or a type variable.
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✷

The type scheme σ′ = ∀β1 . . . βm.τ ′ is said to be a generic instance of σ = ∀α1 . . . αn.τ if there
exists a substitution S such that:

• the domain of S is included in {α1, . . . , αn};

• τ ′ = S(τ);

• no βi occurs free in σ.

In other words, a generic instance of a type scheme is obtained by giving more precise values to
some generic variables, and (possibly) quantifying some of the new type variables introduced.

Example If σ = ∀β.(β → α) → α, then σ′ = ∀γ.((γ → γ) → α) → α is a generic instance of σ.
We changed β into (γ → γ), and we universally quantified on the newly introduced type variable
γ.
✷

We express this type system by means of inference rules. An inference rule is written as a
fraction:

• the numerator is called the premisses;

• the denominator is called the conclusion.

An inference rule:
P1 . . . Pn

C

may be read in two ways:

• “If P1, . . . and Pn, then C”.

• “In order to prove C, it is sufficient to prove P1, . . . and Pn”.

An inference rule may have no premise: such a rule will be called an axiom. A complete proof will
be represented by a proof tree of the following form:

Pm
1 . . . . . . P k

l

...
. . .

P 1
1 . . . P 1

n

C

where the leaves of the tree (Pm
1 , . . . , P k

l ) are instances of axioms.
In the premisses and the conclusions appear judgements having the form:

Γ ⊢ e : σ
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Such a judgement should be read as “under the typing environment Γ, the expression e has type
scheme σ”. Typing environments are sets of typing hypotheses of the form x : σ where x is an
identifier name and σ is a type scheme: typing environments give types to the variables occurring
free (i.e. unbound) in the expression.

When typing λ-calculus terms, the typing environment is managed as a stack (because identifiers
possess local scopes). We represent that fact in the presentation of the type system by removing
the typing hypothesis concerning an identifier name x (if such a typing hypothesis exists) before
adding a new typing hypothesis concerning x.

We write Γ − Γ(x) for the set ot typing hypotheses obtained from Γ by removing the typing
hypothesis concerning x (if it exists).
Any numeric constant is of type Number:

Γ ⊢ Const n : Number
(NUM)

We obtain type schemes for variables from the typing environment Γ:

Γ ∪ {x : σ} ⊢ Var x : σ
(TAUT)

It is possible to instantiate type schemes. The “GenInstance” relation represents generic instanti-
ation.

Γ ⊢ e : σ σ′ = GenInstance(σ)

Γ ⊢ e : σ′
(INST)

It is possible to generalize type schemes with respect to variables that do not occur free in the set
of hypotheses:

Γ ⊢ e : σ α 6∈ FV (Γ)

Γ ⊢ e : ∀α.σ
(GEN)

Typing a conditional:

Γ ⊢ e1 : Number Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ (if e1 then e2 else e3 fi) : τ
(IF)

Typing an application:
Γ ⊢ e1 : τ → τ ′ Γ ⊢ e2 : τ

Γ ⊢ (e1 e2) : τ ′
(APP)

Typing an abstraction:
(Γ− Γ(x)) ∪ {x : τ} ⊢ e : τ ′

Γ ⊢ (λx .e) : τ → τ ′
(ABS)

The special rule below is the one that introduces polymorphism: this corresponds to the ML let

construct.
Γ ⊢ e : σ (Γ− Γ(x)) ∪ {x : σ} ⊢ e′ : τ

Γ ⊢ (λx .e′) e : τ
(LET)

This type system has been proven to be semantically sound, i.e. the semantic value of a well-typed
expression (an expression admitting a type) cannot be an error value due to a type error. This is
usually expressed as:

Well-typed programs cannot go wrong.

This fact implies that a clever compiler may produce code without any dynamic type test for a
well-typed expression.
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Example Let us check, using the set of rules above, that the following is true:

Ø ⊢ let f=λx.x in f f : β → β

In order to do so, we will use the equivalence between the let construct and an application of an
immediate abstraction (i.e. an expression having the following shape: (λv.M)N . The (LET) rule
will be crucial: without it, we could not check the judgement above.

{x : α} ⊢ x : α
TAUT

Ø ⊢ (λx.x ):α→ α
ABS

Ø ⊢ (λx.x ):∀α.α→ α
GEN

Γ ⊢ f : ∀α.α→ α
TAUT

Γ ⊢ f : (β → β)→ (β → β)
INST

Γ ⊢ f : ∀α.α→ α
TAUT

Γ ⊢ f : β → β
INST

Γ = {f : ∀α.α → α} ⊢ f f : β → β
APP

Ø ⊢ (λf .f f )(λx.x ):β → β
LET

✷

This type system does not tell us how to find the best type for an expression. But what is the
best type for an expression? It must be such that any other possible type for that expression is
more specific; in other words, the best type is the most general.

16.2 The algorithm

How do we find the most general type for an expression of our language? The problem with the
set of rules above, is that we could instantiate and generalize types at any time, introducing type
schemes, while the most important rules (application and abstraction) used only types.

Let us write a new set of inference rules that we will read as an algorithm (close to a Prolog
program):

Any numeric constant is of type Number:

Γ ⊢ Const n : Number
(NUM)

The types of identifiers are obtained by taking generic instances of type schemes appearing in the
typing environment. These generic instances will be types and not type schemes: this restriction
appears in the rule below, where the type τ is expected to be a generic instance of the type scheme
σ.

As it is presented (belonging to a deduction system), the following rule will have to anticipate
the effect of the equality constraints between types in the other rules (multiple occurrences of a
type metavariable), when choosing the instance τ .

τ = GenInstance(σ)

Γ ∪ {x : σ} ⊢ Var x : τ
(INST)

When we read this set of inference rules as an algorithm, the (INST) rule will be implemented by:

1. taking as τ the “most general generic instance” of σ that is a type (the rule requires τ to be
a type and not a type scheme),

2. making τ more specific by unification [30] when encountering equality constraints.
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Typing a conditional requires only the test part to be of type Number, and both alternatives to be
of the same type τ . This is an example of equality constraint between the types of two expressions.

Γ ⊢ e1 : Number Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ (if e1then e2 else e3 fi) : τ
(COND)

Typing an application produces also equality constraints that are to be solved by unification:

Γ ⊢ e1 : τ → τ ′ Γ ⊢ e2 : τ

Γ ⊢ (e1 e2) : τ ′
(APP)

Typing an abstraction “pushes” a typing hypothesis for the abstracted identifier: unification will
make it more precise during the typing of the abstraction body:

(Γ− Γ(x)) ∪ {x : ∀.τ} ⊢ e : τ ′

Γ ⊢ (λx .e) : τ → τ ′
(ABS)

Typing a let construct involves a generalization step: we generalize as much as possible.

Γ ⊢ e : τ ′ ~α = FV (τ ′)− FV (Γ) (Γ− Γ(x)) ∪ {x : ∀~α.τ ′} ⊢ e′ : τ

Γ ⊢ (λx .e′) e : τ
(LET)

This set of inference rules represents an algorithm because there is exactly one conclusion for
each syntactic ASL construct (giving priority to the (LET) rule over the regular application rule).
This set of rules may be read as a Prolog program.

This algorithm has been proven to be:

• syntactically sound : when the algorithm succeeds on an expression e and returns a type τ ,
then e : τ .

• complete: if an expression e possesses a type τ , then the algorithm will find a type τ ′ such
that τ is an instance of τ ′. The returned type τ ′ is thus the most general type of e.

Example We compute the type that we simply checked in our last example. What is drawn below
is the result of the type synthesis: in fact, we run our algorithm with type variables representing
unknowns, modifying the previous applications of the (INST) rule when necessary (i.e. when
encountering an equality constraint). This is valid, since it can be proved that the correction
of the whole deduction tree is preserved by substitution of types for type variables. In a real
implementation of the algorithm, the data structures representing types will be submitted to a
unification mechanism.

{x : α} ⊢ x : α
INSTx

Ø ⊢ (λx.x ):α→ α
ABSx

Γ ⊢ f : (β → β)→ (β → β)
INSTf Γ ⊢ f : β → β

INSTf

Γ = {f : ∀α.α→ α} ⊢ f f : β → β
APP

Ø ⊢ (λf .f f )(λx.x ):β → β
LETf

Once again, this expression is not typable without the use of the (LET) rule: an error would occur
because of the type equality constraints between all occurrences of a variable bound by a “λ”. In
an effective implementation, a unification error would occur.
✷

We may notice from the example above that the algorithm is syntax-directed: since, for a
given expression, a type deduction for that expression uses exactly one rule per sub-expression,
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the deduction possesses the same structure as the expression. We can thus reconstruct the ASL
expression from its type deduction tree. From the deduction tree above, if we write upper rules as
being “arguments” of the ones below and if we annotate the applications of the (INST) and (ABS)
rules by the name of the subject variable, we obtain:

LETf (ABSx(INSTx), APP(INSTf , INSTf ))

This is an illustration of the “types-as-propositions and programs-as-proofs” paradigm, also known
as the “Curry-Howard isomorphism” (cf. [14]). In this example, we can see the type of the
considered expression as a proposition and the expression itself as the proof, and, indeed, we
recognize the expression as the deduction tree.

16.3 The ASL type-synthesizer

We now implement the set of inference rules given above.

We need:

• a Caml representation of ASL types and type schemes,

• a management of type environments,

• a unification procedure,

• a typing algorithm.

16.3.1 Representation of ASL types and type schemes

We first need to define a Caml type for our ASL type data structure:

#type asl_type = Unknown

# | Number

# | TypeVar of vartype

# | Arrow of asl_type * asl_type

#and vartype = {Index:int; mutable Value:asl_type}

#and asl_type_scheme = Forall of int list * asl_type ;;

Type asl_type defined.

Type vartype defined.

Type asl_type_scheme defined.

The Unknown ASL type is not really a type: it is the initial value of fresh ASL type variables. We
will consider as abnormal a situation where Unknown appears in place of a regular ASL type. In
such situations, we will raise the following exception:

#exception TypingBug of string;;

Exception TypingBug defined.

Type variables are allocated by the new_vartype function, and their global counter (a local refer-
ence) is reset by reset_vartypes.
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#let new_vartype, reset_vartypes =

#(* Generating and resetting unknowns *)

# let counter = ref 0

# in (function () -> counter:=!counter+1;

# {Index=!counter; Value=Unknown}),

# (function () -> counter:=0; ());;

reset_vartypes : unit -> unit = <fun>

new_vartype : unit -> vartype = <fun>

16.3.2 Destructive unification of ASL types

We will need to “shorten” type variables: since they are indirections to ASL types, we need to follow
these indirections in order to obtain the type that they represent. For the sake of efficiency, we take
advantage of this operation to replace multiple indirections by single indirections (shortening).

#let rec shorten t =

# match t with

# TypeVar {Index=_; Value=Unknown} -> t

# | TypeVar ({Index=_;

# Value=TypeVar {Index=_;

# Value=Unknown} as tv}) -> tv

# | TypeVar ({Index=_; Value=TypeVar tv1} as tv2)

# -> tv2.Value <- tv1.Value; shorten t

# | TypeVar {Index=_; Value=t’} -> t’

# | Unknown -> raise (TypingBug "shorten")

# | t’ -> t’;;

shorten : asl_type -> asl_type = <fun>

An ASL type error will be represented by the following exception:

#exception TypeClash of asl_type * asl_type;;

Exception TypeClash defined.

We will need unification on ASL types with occur-check. The following function implements occur-
check:

#let occurs {Index=n;Value=_} = occrec

# where rec occrec =

# function TypeVar{Index=m;Value=_} -> (n=m)

# | Number -> false

# | Arrow(t1,t2) -> (occrec t1) or (occrec t2)

# | Unknown -> raise (TypingBug "occurs");;

occurs : vartype -> asl_type -> bool = <fun>

The unification function: implements destructive unification. Instead of returning the most general
unifier, it returns the unificand of two types (their most general common instance). The two
arguments are physically modified in order to represent the same type. The unification function
will detect type clashes.
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#let rec unify (tau1,tau2) =

# match (shorten tau1, shorten tau2)

# with (* type variable n and type variable m *)

# (TypeVar({Index=n; Value=Unknown} as tv1) as t1),

# (TypeVar({Index=m; Value=Unknown} as tv2) as t2)

# -> if n <> m then tv1.Value <- t2

# | (* type t1 and type variable *)

# t1, (TypeVar ({Index=_;Value=Unknown} as tv) as t2)

# -> if not(occurs tv t1) then tv.Value <- t1

# else raise (TypeClash (t1,t2))

# | (* type variable and type t2 *)

# (TypeVar ({Index=_;Value=Unknown} as tv) as t1), t2

# -> if not(occurs tv t2) then tv.Value <- t2

# else raise (TypeClash (t1,t2))

# | Number, Number -> ()

# | Arrow(t1,t2), (Arrow(t’1,t’2) as t)

# -> unify(t1,t’1); unify(t2,t’2)

# | (t1,t2) -> raise (TypeClash (t1,t2));;

unify : asl_type * asl_type -> unit = <fun>

16.3.3 Representation of typing environments

We use asl_type_scheme list as typing environments, and we will use the encoding of variables
as indices into the environment.

The initial environment is a list of types (Number -> (Number -> Number)), which are the
types of the ASL primitive functions.

#let init_typing_env =

# map (function s ->

# Forall([],Arrow(Number,

# Arrow(Number,Number))))

# init_env;;

init_typing_env : asl_type_scheme list = [Forall ([], Arrow (Number, Arrow (Numb

er, Number))); Forall ([], Arrow (Number, Arrow (Number, Number))); Forall ([],

Arrow (Number, Arrow (Number, Number))); Forall ([], Arrow (Number, Arrow (Numbe

r, Number))); Forall ([], Arrow (Number, Arrow (Number, Number)))]

The global typing environment is initialized to the initial typing environment, and will be updated
with the type of each ASL declaration, after they are type-checked.

#let global_typing_env = ref init_typing_env;;

global_typing_env : asl_type_scheme list ref = ref [Forall ([], Arrow (Number, A

rrow (Number, Number))); Forall ([], Arrow (Number, Arrow (Number, Number))); Fo

rall ([], Arrow (Number, Arrow (Number, Number))); Forall ([], Arrow (Number, Ar

row (Number, Number))); Forall ([], Arrow (Number, Arrow (Number, Number)))]
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16.3.4 From types to type schemes: generalization

In order to implement generalization, we will need some functions collecting types variables occur-
ring in ASL types.

The following function computes the list of type variables of its argument.

#let vars_of_type tau = vars [] tau

# where rec vars vs =

# function Number -> vs

# | TypeVar {Index=n; Value=Unknown}

# -> if mem n vs then vs else n::vs

# | TypeVar {Index=_; Value= t} -> vars vs t

# | Arrow(t1,t2) -> vars (vars vs t1) t2

# | Unknown -> raise (TypingBug "vars_of_type");;

vars_of_type : asl_type -> int list = <fun>

The unknowns_of_type(bv,t) application returns the list of variables occurring in t that do not
appear in bv. The subtract function returns the difference of two lists.

#let unknowns_of_type (bv,t) =

# subtract (vars_of_type t) bv;;

unknowns_of_type : int list * asl_type -> int list = <fun>

We need to compute the list of unknowns of a type environment for the generalization process (un-
knowns belonging to that list cannot become generic). The set of unknowns of a type environment
is the union of the unknowns of each type. The flat function flattens a list of lists.

#let flat = it_list (prefix @) [];;

flat : ’a list list -> ’a list = <fun>

#let unknowns_of_type_env env =

# flat (map (function Forall(gv,t) -> unknowns_of_type (gv,t)) env);;

unknowns_of_type_env : asl_type_scheme list -> int list = <fun>

The generalization of a type is relative to a typing environment. The make_set function eliminates
duplicates in its list argument.

#let rec make_set = function

# [] -> []

# | x::l -> if mem x l then make_set l else x :: make_set l;;

make_set : ’a list -> ’a list = <fun>

#let generalise_type (gamma, tau) =

# let genvars =

# make_set (subtract (vars_of_type tau)

# (unknowns_of_type_env gamma))

# in Forall(genvars, tau)

#;;

generalise_type : asl_type_scheme list * asl_type -> asl_type_scheme = <fun>
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16.3.5 From type schemes to types: generic instantiation

The following function returns a generic instance of its type scheme argument. A generic instance
is obtained by replacing all generic type variables by new unknowns:

#let gen_instance (Forall(gv,tau)) =

# (* We associate a new unknown to each generic variable *)

# let unknowns =

# map (function n -> n, TypeVar(new_vartype()))

# gv

# in ginstance tau

# where rec ginstance = function

# (TypeVar {Index=n; Value=Unknown} as t) ->

# (try assoc n unknowns

# with Not_found -> t)

# | TypeVar {Index=_; Value= t} -> ginstance t

# | Number -> Number

# | Arrow(t1,t2) -> Arrow(ginstance t1, ginstance t2)

# | Unknown -> raise (TypingBug "gen_instance")

#;;

gen_instance : asl_type_scheme -> asl_type = <fun>

16.3.6 The ASL type synthesizer

The type synthesizer is the asl_typing_expr function. Each of its match cases corresponds to an
inference rule given above.

#let rec asl_typing_expr gamma = type_rec

#where rec type_rec = function

# Const _ -> Number

# | Var n ->

# let sigma =

# try nth n gamma

# with Failure _ -> raise (TypingBug "Unbound")

# in gen_instance sigma

# | Cond (e1,e2,e3) ->

# unify(Number, type_rec e1);

# let t2 = type_rec e2 and t3 = type_rec e3

# in unify(t2, t3); t3

# | App((Abs(x,e2) as f), e1) -> (* LET case *)

# let t1 = type_rec e1 in

# let sigma = generalise_type (gamma,t1)

# in asl_typing_expr (sigma::gamma) e2

# | App(e1,e2) ->

# let u = TypeVar(new_vartype())

# in unify(type_rec e1,Arrow(type_rec e2,u)); u
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# | Abs(x,e) ->

# let u = TypeVar(new_vartype()) in

# let s = Forall([],u)

# in Arrow(u,asl_typing_expr (s::gamma) e);;

asl_typing_expr : asl_type_scheme list -> asl -> asl_type = <fun>

16.3.7 Typing, trapping type clashes and printing ASL types

Now, we define some auxiliary functions in order to build a “good-looking” type synthesizer. First of
all, a printing routine for ASL type schemes is defined (using a function tvar_name which computes
a decent name for type variables).

#let tvar_name n =

# (* Computes a name "’a", ... for type variables, *)

# (* given an integer n representing the position *)

# (* of the type variable in the list of generic *)

# (* type variables *)

# let rec name_of n =

# let q,r = (n / 26), (n mod 26) in

# let s = make_string 1 (char_of_int (96+r)) in

# if q=0 then s else (name_of q)^s

# in "’"^(name_of n)

#;;

tvar_name : int -> string = <fun>

Then a printing function for type schemes.

#let print_type_scheme (Forall(gv,t)) =

# (* Prints a type scheme. *)

# (* Fails when it encounters an unknown *)

# let names = (names_of (1,gv)

# where rec names_of = function

# (n,[]) -> []

# | (n,(v1::Lv)) -> (tvar_name n)

# ::(names_of (n+1, Lv))) in

# let tvar_names = combine (rev gv,names)

# in print_rec t

# where rec print_rec = function

# TypeVar{Index=n; Value=Unknown} ->

# let name =

# try assoc n tvar_names

# with Not_found ->

# raise (TypingBug "Non generic variable")

# in print_string name

# | TypeVar{Index=_;Value=t} -> print_rec t

# | Number -> print_string "Number"
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# | Arrow(t1,t2) ->

# print_string "("; print_rec t1;

# print_string " -> "; print_rec t2;

# print_string ")"

# | Unknown -> raise (TypingBug "print_type_scheme");;

print_type_scheme : asl_type_scheme -> unit = <fun>

Now, the main function which resets the type variables counter, calls the type synthesizer, traps
ASL type clashes and prints the resulting types. At the end, the global environments are updated.

#let typing (Decl(s,e)) =

# reset_vartypes();

# let tau = (* TYPING *)

# try asl_typing_expr !global_typing_env e

# with TypeClash(t1,t2) -> (* A typing error *)

# let vars=vars_of_type(t1)@vars_of_type(t2) in

# print_string "ASL Type clash between ";

# print_type_scheme (Forall(vars,t1));

# print_string " and ";

# print_type_scheme (Forall(vars,t2));

# print_newline();

# raise (Failure "ASL typing") in

# let sigma = generalise_type (!global_typing_env,tau) in

# (* UPDATING ENVIRONMENTS *)

# global_env := s::!global_env;

# global_typing_env := sigma::!global_typing_env;

# reset_vartypes ();

# (* PRINTING RESULTING TYPE *)

# print_string "ASL Type of ";

# print_string s;

# print_string " is ";

# print_type_scheme sigma; print_newline();;

typing : top_asl -> unit = <fun>

16.3.8 Typing ASL programs

We reinitialize the parsing environment:

#global_env:=init_env; ();;

- : unit = ()

Now, let us run some examples through the ASL type checker:

#typing (parse_top "let x be 1;");;

ASL Type of x is Number

- : unit = ()

#typing (parse_top "+ 2 ((\\x.x) 3);");;
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ASL Type of it is Number

- : unit = ()

#typing (parse_top "if + 0 1 then 1 else 0 fi;");;

ASL Type of it is Number

- : unit = ()

#typing (parse_top "let id be \\x.x;");;

ASL Type of id is (’a -> ’a)

- : unit = ()

#typing (parse_top "+ (id 1) (id id 2);");;

ASL Type of it is Number

- : unit = ()

#typing (parse_top "let f be (\\x.x x) (\\x.x);");;

ASL Type of f is (’a -> ’a)

- : unit = ()

#typing (parse_top "+ (\\x.x) 1;");;

ASL Type clash between Number and (’a -> ’a)

Uncaught exception: Failure "ASL typing"

16.3.9 Typing and recursion

The Z fixpoint combinator does not have a type in Milner’s type system:

#typing (parse_top

# "let fix be \\f.((\\x.f(\\z.(x x)z)) (\\x.f(\\z.(x x)z)));");;

ASL Type clash between ’a and (’a -> ’b)

Uncaught exception: Failure "ASL typing"

This is because we try to apply x to itself, and the type of x is not polymorphic. In fact, no fixpoint
combinator is typable in ASL. This is why we need a special primitive or syntactic construct in
order to express recursivity.

If we want to assign types to recursive programs, we have to predefine the Z fixpoint combinator.
Its type scheme should be ∀α.((α→ α)→ α), because we take fixpoints of functions.

#global_env := "fix"::init_env;

#global_typing_env:=

# (Forall([1],

# Arrow(Arrow(TypeVar{Index=1;Value=Unknown},

# TypeVar{Index=1;Value=Unknown}),

# TypeVar{Index=1;Value=Unknown})))

# ::init_typing_env;

#();;

- : unit = ()

We can now define our favorite functions as:
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#typing (parse_top

# "let fact be fix (\\f.(\\n. if = n 0 then 1

# else * n (f (- n 1))

# fi));");;

ASL Type of fact is (Number -> Number)

- : unit = ()

#typing (parse_top "fact 8;");;

ASL Type of it is Number

- : unit = ()

#typing (parse_top

# "let fib be fix (\\f.(\\n. if = n 1 then 1

# else if = n 2 then 1

# else + (f(- n 1)) (f(- n 2))

# fi

# fi));");;

ASL Type of fib is (Number -> Number)

- : unit = ()

#typing (parse_top "fib 9;");;

ASL Type of it is Number

- : unit = ()
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Chapter 17

Compiling ASL to an abstract
machine code

In order to fully take advantage of the static typing of ASL programs, we have to:

• either write a new interpreter without type tests (difficult, because we used pattern-matching
in order to realize type tests);

• or design an untyped machine and produce code for it.

We choose here the second solution: it will permit us to give some intuition about the compiling
process of functional languages, and to describe a typical execution model for (strict) functional
languages. The machine that we will use is a simplified version the Categorical Abstract Machine
(CAM, for short).

We will call CAM our abstract machine, despite its differences with the original CAM. For more
informations on the CAM, see [8, 24].

17.1 The Abstract Machine

The execution model is a stack machine (i.e. a machine using a stack). In this section, we define
in Caml the states of the CAM and its instructions.

A state is composed of:

• a register (holding values and environments),

• a program counter, represented here as a list of instructions whose first element is the current
instruction being executed,

• and a stack represented as a list of code addresses (instruction lists), values and environments.

The first Caml type that we need is the type for CAM instructions. We will study later the effect
of each instruction.

#type instruction =

# Quote of int (* Integer constants *)

133
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#| Plus | Minus (* Arithmetic operations *)

#| Divide | Equal | Times

#| Nth of int (* Variable accesses *)

#| Branch of instruction list * instruction list

# (* Conditional execution *)

#| Push (* Pushes onto the stack *)

#| Swap (* Exch. top of stack and register *)

#| Clos of instruction list (* Builds a closure with the current environment *)

#| Apply (* Function application *)

#;;

Type instruction defined.

We need a new type for semantic values since instruction lists have now replaced abstract syntax
trees. The semantic values are merged in a type object. The type object behaves as data
in a computer memory: we need higher-level information (such as type information) in order to
interpret them. Furthermore, some data do not correspond to anything (for example an environment
composed of environments represents neither an ASL value nor an intermediate data in a legal
computation process).

#type object = Constant of int

# | Closure of object * object

# | Address of instruction list

# | Environment of object list

#;;

Type object defined.

The type state is a product type with mutable components.

#type state = {mutable Reg: object;

# mutable PC: instruction list;

# mutable Stack: object list}

#;;

Type state defined.

Now, we give the operational semantics of CAM instructions. The effect of an instruction is to
change the state configuration. This is what we describe now with the step function. Code
executions will be arbitrary iterations of this function.

#exception CAMbug of string;;

Exception CAMbug defined.

#exception CAM_End of object;;

Exception CAM_End defined.

#let step state = match state with

# {Reg=_; PC=Quote(n)::code; Stack=s} ->

# state.Reg <- Constant(n); state.PC <- code

#
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#| {Reg=Constant(m); PC=Plus::code; Stack=Constant(n)::s} ->

# state.Reg <- Constant(n+m); state.Stack <- s;

# state.PC <- code

#

#| {Reg=Constant(m); PC=Minus::code; Stack=Constant(n)::s} ->

# state.Reg <- Constant(n-m); state.Stack <- s;

# state.PC <- code

#

#| {Reg=Constant(m); PC=Times::code; Stack=Constant(n)::s} ->

# state.Reg <- Constant(n*m); state.Stack <- s;

# state.PC <- code

#

#| {Reg=Constant(m); PC=Divide::code; Stack=Constant(n)::s} ->

# state.Reg <- Constant(n/m); state.Stack <- s;

# state.PC <- code

#

#| {Reg=Constant(m); PC=Equal::code; Stack=Constant(n)::s} ->

# state.Reg <- Constant(if n=m then 1 else 0);

# state.Stack <- s; state.PC <- code

#

#| {Reg=Constant(m); PC=Branch(code1,code2)::code; Stack=r::s} ->

# state.Reg <- r;

# state.Stack <- Address(code)::s;

# state.PC <- (if m=0 then code2 else code1)

#

#| {Reg=r; PC=Push::code; Stack=s} ->

# state.Stack <- r::s; state.PC <- code

#

#| {Reg=r1; PC=Swap::code; Stack=r2::s} ->

# state.Reg <- r2; state.Stack <- r1::s;

# state.PC <- code

#

#| {Reg=r; PC=Clos(code1)::code; Stack=s} ->

# state.Reg <- Closure(Address(code1),r);

# state.PC <- code

#

#| {Reg=_; PC=[]; Stack=Address(code)::s} ->

# state.Stack <- s; state.PC <- code

#

#| {Reg=v; PC=Apply::code;

# Stack=Closure(Address(code1),Environment(e))::s} ->

# state.Reg <- Environment(v::e);

# state.Stack <- Address(code)::s;

# state.PC <- code1

#
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#| {Reg=v; PC=[]; Stack=[]} ->

# raise (CAM_End v)

#| {Reg=_; PC=(Plus|Minus|Times|Divide|Equal)::code; Stack=_::_} ->

# raise (CAMbug "IllTyped")

#

#| {Reg=Environment(e); PC=Nth(n)::code; Stack=_} ->

# state.Reg <- (try nth n e

# with Failure _ -> raise (CAMbug "IllTyped"));

# state.PC <- code

#| _ -> raise (CAMbug "Wrong configuration")

#;;

step : state -> unit = <fun>

We may notice that the empty code sequence denotes a (possibly final) return instruction.
We could argue that pattern-matching in the Camlstep function implements a kind of dynamic

typechecking. In fact, in a concrete (low-level) implementation of the machine (expansion of the
CAM instructions in assembly code, for example), these tests would not appear. They are useless
since we trust the typechecker and the compiler. So, any execution error in a real implementa-
tion comes from a bug in one of the above processes and would lead to memory errors or illegal
instructions (usually detected by the computer’s operating system).

17.2 Compiling ASL programs into CAM code

We give in this section a compiling function taking the abstract syntax tree of an ASL expression
and producing CAM code. The compilation scheme is very simple:

• the code of a constant is Quote;

• a variable is compiled as an access to the appropriate component of the current environment
(Nth);

• the code of a conditional expression will save the current environment (Push), evaluate the
condition part, and, according to the boolean value obtained, select the appropriate code to
execute (Branch);

• the code of an application will also save the environment on the stack (Push), execute the
function part of the application, then exchange the functional value and the saved environment
(Swap), evaluate the argument and, finally, apply the functional value (which is at the top of
the stack) to the argument held in the register with the Apply instruction;

• the code of an abstraction simply consists in building a closure representing the functional
value: the closure is composed of the code of the function and the current environment.

Here is the compiling function:

#let rec code_of = function

# Const(n) -> [Quote(n)]

#| Var n -> [Nth(n)]
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#| Cond(e_test,e_t,e_f) ->

# Push::(code_of e_test)

# @[Branch(code_of e_t, code_of e_f)]

#| App(e1,e2) -> Push::(code_of e1)

# @[Swap]@(code_of e2)

# @[Apply]

#| Abs(_,e) -> [Clos(code_of e)];;

code_of : asl -> instruction list = <fun>

A global environment is needed in order to maintain already defined values. Any CAM execution
will start in a state whose register part contains this global environment.

#let init_CAM_env =

# let basic_instruction = function

# "+" -> Plus

# | "-" -> Minus

# | "*" -> Times

# | "/" -> Divide

# | "=" -> Equal

# | s -> raise (CAMbug "Unknown primitive")

# in map (function s ->

# Closure(Address[Clos(Push::Nth(2)

# ::Swap::Nth(1)

# ::[basic_instruction s])],

# Environment []))

# init_env;;

init_CAM_env : object list = [Closure (Address [Clos [Push; Nth 2; Swap; Nth 1;

Plus]], Environment []); Closure (Address [Clos [Push; Nth 2; Swap; Nth 1; Minus

]], Environment []); Closure (Address [Clos [Push; Nth 2; Swap; Nth 1; Times]],

Environment []); Closure (Address [Clos [Push; Nth 2; Swap; Nth 1; Divide]], Env

ironment []); Closure (Address [Clos [Push; Nth 2; Swap; Nth 1; Equal]], Environ

ment [])]

#let global_CAM_env = ref init_CAM_env;;

global_CAM_env : object list ref = ref [Closure (Address [Clos [Push; Nth 2; Swa

p; Nth 1; Plus]], Environment []); Closure (Address [Clos [Push; Nth 2; Swap; Nt

h 1; Minus]], Environment []); Closure (Address [Clos [Push; Nth 2; Swap; Nth 1;

Times]], Environment []); Closure (Address [Clos [Push; Nth 2; Swap; Nth 1; Div

ide]], Environment []); Closure (Address [Clos [Push; Nth 2; Swap; Nth 1; Equal]

], Environment [])]

As an example, here is the code for some ASL expressions.

#code_of (expression(lexer(stream_of_string "1;")));;

- : instruction list = [Quote 1]

#code_of (expression(lexer(stream_of_string "+ 1 2;")));;

- : instruction list = [Push; Push; Nth 6; Swap; Quote 1; Apply; Swap; Quote 2;
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Apply]

#code_of (expression(lexer(stream_of_string "(\\x.x) ((\\x.x) 0);")));;

- : instruction list = [Push; Clos [Nth 1]; Swap; Push; Clos [Nth 1]; Swap; Quot

e 0; Apply; Apply]

#code_of (expression(lexer(stream_of_string

# "+ 1 (if 0 then 2 else 3 fi);")));;

- : instruction list = [Push; Push; Nth 6; Swap; Quote 1; Apply; Swap; Push; Quo

te 0; Branch ([Quote 2], [Quote 3]); Apply]

17.3 Execution of CAM code

The main function for executing compiled ASL manages the global environment until execution
has succeeded.

#let run (Decl(s,e)) =

# (* TYPING *)

# reset_vartypes();

# let tau =

# try asl_typing_expr !global_typing_env e

# with TypeClash(t1,t2) ->

# let vars=vars_of_type(t1) @ vars_of_type(t2) in

# print_string "ASL Type clash between ";

# print_type_scheme (Forall(vars,t1));

# print_string " and ";

# print_type_scheme (Forall(vars,t2));

# raise (Failure "ASL typing")

# | Unbound s -> raise (TypingBug ("Unbound: "^s)) in

# let sigma = generalise_type (!global_typing_env,tau) in

# (* PRINTING TYPE INFORMATION *)

# print_string "ASL Type of ";

# print_string s; print_string " is ";

# print_type_scheme sigma; print_newline();

# (* COMPILING *)

# let code = code_of e in

# let state = {Reg=Environment(!global_CAM_env); PC=code; Stack=[]} in

# (* EXECUTING *)

# let result = try while true do step state done; state.Reg

# with CAM_End v -> v in

# (* UPDATING ENVIRONMENTS *)

# global_env := s::!global_env;

# global_typing_env := sigma::!global_typing_env;

# global_CAM_env := result::!global_CAM_env;

# (* PRINTING RESULT *)

# (match result
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# with Constant(n) -> print_int n

# | Closure(_,_) -> print_string "<funval>"

# | _ -> raise (CAMbug "Wrong state configuration"));

# print_newline();;

run : top_asl -> unit = <fun>

Now, let us run some examples:

#(* Reinitializing environments *)

#global_env:=init_env;

#global_typing_env:=init_typing_env;

#global_CAM_env:=init_CAM_env;

#();;

- : unit = ()

#run (parse_top "1;");;

ASL Type of it is Number

1

- : unit = ()

#run (parse_top "+ 1 2;");;

ASL Type of it is Number

3

- : unit = ()

#run (parse_top "(\\f.(\\x.f x)) (\\x. + x 1) 3;");;

ASL Type of it is Number

4

- : unit = ()

We may now introduce the Z fixpoint combinator as a predefined function fix.

#begin

# global_env:="fix"::init_env;

# global_typing_env:=

# (Forall([1],

# Arrow(Arrow(TypeVar{Index=1;Value=Unknown},

# TypeVar{Index=1;Value=Unknown}),

# TypeVar{Index=1;Value=Unknown})))

# ::init_typing_env;

# global_CAM_env:=

# (match code_of (expression(lexer(stream_of_string

# "\\f.((\\x.f(\\z.(x x)z)) (\\x.f(\\z.(x x)z)));")))

# with [Clos(C)] -> Closure(Address(C), Environment [])

# | _ -> raise (CAMbug "Wrong code for fix"))

# ::init_CAM_env

#end;;

- : unit = ()
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#run (parse_top

# "let fact be fix (\\f.(\\n. if = n 0 then 1

# else * n (f (- n 1))

# fi));");;

ASL Type of fact is (Number -> Number)

<funval>

- : unit = ()

#run (parse_top

# "let fib be fix (\\f.(\\n. if = n 1 then 1

# else if = n 2 then 1

# else + (f(- n 1)) (f(- n 2))

# fi

# fi));");;

ASL Type of fib is (Number -> Number)

<funval>

- : unit = ()

#run (parse_top "fact 8;");;

ASL Type of it is Number

40320

- : unit = ()

#run (parse_top "fib 9;");;

ASL Type of it is Number

34

- : unit = ()

It is of course possible (and desirable) to introduce recursion by using a specific syntactic
construct, special instructions and a dedicated case to the compiling function. See [24] for efficient
compilation of recursion, data structures etc.

17.1 Interesting exercises for which we won’t give solutions consist in enriching according to your
taste the ASL language. Also, building a standalone ASL interpreter is a good exercise in modular
programming.
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Answers to exercises

We give in this chapter one possible solution for each exercise contained in this document. Exercises
are referred to by their number and the page where they have been proposed: for example, “2.1,
p. 15” refers to the first exercise in chapter 2; this exercise is located on page 15.

4.1, p. 37

The following (anonymous) functions have the required types:

1. #function f -> (f 2)+1;;

- : (int -> int) -> int = <fun>

2. #function m -> (function n -> n+m+1);;

- : int -> int -> int = <fun>

3. #(function f -> (function m -> f(m+1) / 2));;

- : (int -> int) -> int -> int = <fun>

4.2, p. 38

We must first rename y to z, obtaining:

(function x -> (function z -> x+z))

and finally:

(function y -> (function z -> y+z))

Without renaming, we would have obtained:

(function y -> (function y -> y+y))

which does not denote the same function.

141
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4.3, p. 38

We write successively the reduction steps for each expressions, and then we use Caml in order to
check the result.

• let x=1+2 in ((function y -> y+x) x);;

(function y -> y+(1+2)) (1+2);;

(function y -> y+(1+2)) 3;;

3+(1+2);;

3+3;;

6;;

Caml says:

#let x=1+2 in ((function y -> y+x) x);;

- : int = 6

• let x=1+2 in ((function x -> x+x) x);;

(function x -> x+x) (1+2);;

3+3;;

6;;

Caml says:

#let x=1+2 in ((function x -> x+x) x);;

- : int = 6

• let f1 = function f2 -> (function x -> f2 x)

in let g = function x -> x+1

in f1 g 2;;

let g = function x -> x+1

in function f2 -> (function x -> f2 x) g 2;;

(function f2 -> (function x -> f2 x)) (function x -> x+1) 2;;

(function x -> (function x -> x+1) x) 2;;

(function x -> x+1) 2;;

2+1;;

3;;

Caml says:

#let f1 = function f2 -> (function x -> f2 x)

#in let g = function x -> x+1

# in f1 g 2;;

- : int = 3

5.1, p. 49

To compute the surface area of a rectangle and the volume of a sphere:
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#let surface_rect len wid = len * wid;;

surface_rect : int -> int -> int = <fun>

#let pi = 4.0 *. atan 1.0;;

pi : float = 3.14159265359

#let volume_sphere r = 4.0 /. 3.0 *. pi *. (power r 3.);;

volume_sphere : float -> float = <fun>

5.2, p. 49

In a call-by-value language without conditional construct (and without sum types), all programs
involving a recursive definition never terminate.

5.3, p. 49

#let rec factorial n = if n=1 then 1 else n*(factorial(n-1));;

factorial : int -> int = <fun>

#factorial 5;;

- : int = 120

#let tail_recursive_factorial n =

# let rec fact n m = if n=1 then m else fact (n-1) (n*m)

# in fact n 1;;

tail_recursive_factorial : int -> int = <fun>

#tail_recursive_factorial 5;;

- : int = 120

5.4, p. 49

#let rec fibonacci n =

# if n=1 then 1

# else if n=2 then 1

# else fibonacci(n-1) + fibonacci(n-2);;

fibonacci : int -> int = <fun>

#fibonacci 20;;

- : int = 6765

5.5, p. 50

#let compose f g = function x -> f (g (x));;

compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>

#let curry f = function x -> (function y -> f(x,y));;

curry : (’a * ’b -> ’c) -> ’a -> ’b -> ’c = <fun>
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#let uncurry f = function (x,y) -> f x y;;

uncurry : (’a -> ’b -> ’c) -> ’a * ’b -> ’c = <fun>

#uncurry compose;;

- : (’a -> ’b) * (’c -> ’a) -> ’c -> ’b = <fun>

#compose curry uncurry;;

- : (’a -> ’b -> ’c) -> ’a -> ’b -> ’c = <fun>

#compose uncurry curry;;

- : (’a * ’b -> ’c) -> ’a * ’b -> ’c = <fun>

6.1, p. 54

#let rec combine =

# function [],[] -> []

# | (x1::l1),(x2::l2) -> (x1,x2)::(combine(l1,l2))

# | _ -> raise (Failure "combine: lists of different length");;

combine : ’a list * ’b list -> (’a * ’b) list = <fun>

#combine ([1;2;3],["a";"b";"c"]);;

- : (int * string) list = [1, "a"; 2, "b"; 3, "c"]

#combine ([1;2;3],["a";"b"]);;

Uncaught exception: Failure "combine: lists of different length"

6.2, p. 54

#let rec sublists =

# function [] -> [[]]

# | x::l -> let sl = sublists l

# in sl @ (map (fun l -> x::l) sl);;

sublists : ’a list -> ’a list list = <fun>

#sublists [];;

- : ’a list list = [[]]

#sublists [1;2;3];;

- : int list list = [[]; [3]; [2]; [2; 3]; [1]; [1; 3]; [1; 2]; [1; 2; 3]]

#sublists ["a"];;

- : string list list = [[]; ["a"]]

7.1, p. 64

#type (’a,’b) btree = Leaf of ’b

# | Btree of (’a,’b) node

#and (’a,’b) node = {Op:’a;
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# Son1: (’a,’b) btree;

# Son2: (’a,’b) btree};;

Type btree defined.

Type node defined.

#let rec nodes_and_leaves =

# function Leaf x -> ([],[x])

# | Btree {Op=x; Son1=s1; Son2=s2} ->

# let (nodes1,leaves1) = nodes_and_leaves s1

# and (nodes2,leaves2) = nodes_and_leaves s2

# in (x::nodes1@nodes2, leaves1@leaves2);;

nodes_and_leaves : (’a, ’b) btree -> ’a list * ’b list = <fun>

#nodes_and_leaves (Btree {Op="+"; Son1=Leaf 1; Son2=Leaf 2});;

- : string list * int list = ["+"], [1; 2]

7.2, p. 64

#let map_btree f g = map_rec

#where rec map_rec =

# function Leaf x -> Leaf (f x)

# | Btree {Op=op; Son1=s1; Son2=s2} ->

# Btree {Op=g op; Son1=map_rec s1; Son2=map_rec s2};;

map_btree : (’a -> ’b) -> (’c -> ’d) -> (’c, ’a) btree -> (’d, ’b) btree = <fun>

7.3, p. 64

We need to give a functional interpretation to btree data constructors. We use f (resp. g) to
denote the function associated to the Leaf (resp. Btree) data constructor, obtaining the following
Caml definition:

#let btree_it f g = it_rec

#where rec it_rec =

# function Leaf x -> f x

# | Btree{Op=op; Son1=s1; Son2=s2} ->

# g op (it_rec s1) (it_rec s2);;

btree_it : (’a -> ’b) -> (’c -> ’b -> ’b -> ’b) -> (’c, ’a) btree -> ’b = <fun>

#btree_it (function x -> x)

# (function "+" -> prefix +

# | _ -> raise (Failure "Unknown op"))

# (Btree {Op="+"; Son1=Leaf 1; Son2=Leaf 2});;

- : int = 3
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8.1, p. 72

#type (’a,’b) lisp_cons = {mutable Car:’a; mutable Cdr:’b};;

Type lisp_cons defined.

#let car p = p.Car

#and cdr p = p.Cdr

#and rplaca p v = p.Car <- v

#and rplacd p v = p.Cdr <- v;;

car : (’a, ’b) lisp_cons -> ’a = <fun>

cdr : (’a, ’b) lisp_cons -> ’b = <fun>

rplaca : (’a, ’b) lisp_cons -> ’a -> unit = <fun>

rplacd : (’a, ’b) lisp_cons -> ’b -> unit = <fun>

#let p = {Car=1; Cdr=true};;

p : (int, bool) lisp_cons = {Car=1; Cdr=true}

#rplaca p 2;;

- : unit = ()

#p;;

- : (int, bool) lisp_cons = {Car=2; Cdr=true}

8.2, p. 72

#let stamp_counter = ref 0;;

stamp_counter : int ref = ref 0

#let stamp () =

# stamp_counter := 1 + !stamp_counter; !stamp_counter;;

stamp : unit -> int = <fun>

#stamp();;

- : int = 1

#stamp();;

- : int = 2

8.3, p. 72

#let exchange t i j =

# let v = t.(i) in vect_assign t i t.(j); vect_assign t j v

#;;

exchange : ’a vect -> int -> int -> unit = <fun>

#let quick_sort t =

# let rec quick lo hi =

# if lo < hi

# then begin
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# let i = ref lo

# and j = ref hi

# and p = t.(hi) in

# while !i < !j

# do

# while !i < hi & t.(!i) <=. p do incr i done;

# while !j > lo & p <=. t.(!j) do decr j done;

# if !i < !j then exchange t !i !j

# done;

# exchange t hi !i;

# quick lo (!i - 1);

# quick (!i + 1) hi

# end

# else ()

# in quick 0 (vect_length t - 1)

#;;

quick_sort : float vect -> unit = <fun>

#let a = [| 2.0; 1.5; 4.0; 0.0; 10.0; 1.0 |];;

a : float vect = [|2; 1.5; 4; 0; 10; 1|]

#quick_sort a;;

- : unit = ()

#a;;

- : float vect = [|0; 1; 1.5; 2; 4; 10|]

9.1, p. 76

#let find_succeed f = find_rec

#where rec find_rec =

# function [] -> raise (Failure "find_succeed")

# | x::l -> try f x; x with _ -> find_rec l;;

find_succeed : (’a -> ’b) -> ’a list -> ’a = <fun>

#let hd = function [] -> raise (Failure "empty") | x::l -> x;;

hd : ’a list -> ’a = <fun>

#find_succeed hd [[];[];[1;2];[3;4]];;

- : int list = [1; 2]

9.2, p. 76

#let map_succeed f = map_f

#where rec map_f =

# function [] -> []

# | h::t -> try (f h)::(map_f t)
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# with _ -> map_f t;;

map_succeed : (’a -> ’b) -> ’a list -> ’b list = <fun>

#map_succeed hd [[];[1];[2;3];[4;5;6]];;

- : int list = [1; 2; 4]

10.1, p. 81

The first function (copy) that we define assumes that its arguments are respectively the input and
the output channel. They are assumed to be already opened.

#let copy inch outch =

# (* inch and outch are supposed to be opened channels *)

# try (* actual copying *)

# while true

# do output_char outch (input_char inch)

# done

# with End_of_file -> (* Normal termination *)

# raise End_of_file

# | sys__Sys_error msg -> (* Abnormal termination *)

# prerr_endline msg;

# raise (Failure "cp")

# | _ -> (* Unknow exception, maybe interruption? *)

# prerr_endline "Unknown error while copying";

# raise (Failure "cp")

#;;

copy : in_channel -> out_channel -> unit = <fun>

The next function opens channels connected to its filename arguments, and calls copy on these
channels. The advantage of dividing the code into two functions is that copy performs the actual
work, and can be reused in different applications, while the role of cp is more “administrative”
in the sense that it does nothing but opening and closing channels and printing possible error
messages.

#let cp f1 f2 =

# (* Opening channels, f1 first, then f2 *)

# let inch =

# try open_in f1

# with sys__Sys_error msg ->

# prerr_endline (f1^": "^msg);

# raise (Failure "cp")

# | _ -> prerr_endline ("Unknown exception while opening "^f1);

# raise (Failure "cp")

# in

# let outch =

# try open_out f2
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# with sys__Sys_error msg ->

# close_in inch;

# prerr_endline (f2^": "^msg);

# raise (Failure "cp")

# | _ -> close_in inch;

# prerr_endline ("Unknown exception while opening "^f2);

# raise (Failure "cp")

# in (* Copying and then closing *)

# try copy inch outch

# with End_of_file -> close_in inch; close_out outch

# (* close_out flushes *)

# | exc -> close_in inch; close_out outch; raise exc

#;;

cp : string -> string -> unit = <fun>

Let us try cp:

#cp "/etc/passwd" "/tmp/foo";;

- : unit = ()

#cp "/tmp/foo" "/foo";;

/foo: Permission denied

Uncaught exception: Failure "cp"

The last example failed because a regular user is not allowed to write at the root of the file system.

10.2, p. 81

As in the previous exercise, the function count performs the actual counting. It works on an input
channel and returns a pair of integers.

#let count inch =

# let chars = ref 0

# and lines = ref 0 in

# try

# while true do

# let c = input_char inch in

# chars := !chars + 1;

# if c = ‘\n‘ then lines := !lines + 1 else ()

# done;

# (!chars, !lines)

# with End_of_file -> (!chars, !lines)

#;;

count : in_channel -> int * int = <fun>

The function wc opens a channel on its filename argument, calls count and prints the result.

#let wc f =
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# let inch =

# try open_in f

# with sys__Sys_error msg ->

# prerr_endline (f^": "^msg);

# raise (Failure "wc")

# | _ -> prerr_endline ("Unknown exception while opening "^f);

# raise (Failure "wc")

# in let (chars,lines) = count inch

# in print_int chars;

# print_string " characters, ";

# print_int lines;

# print_string " lines.\n"

#;;

wc : string -> unit = <fun>

Counting /etc/passwd gives:

#wc "/etc/passwd";;

27893 characters, 329 lines.

- : unit = ()

11.1, p. 94

Let us recall the definitions of the type token and of the lexical analyzer:

#type token =

# PLUS | MINUS | TIMES | DIV | LPAR | RPAR

#| INT of int;;

Type token defined.

#(* Spaces *)

#let rec spaces = function

# [< ’‘ ‘|‘\t‘|‘\n‘; spaces _ >] -> ()

#| [< >] -> ();;

spaces : char stream -> unit = <fun>

#(* Integers *)

#let int_of_digit = function

# ‘0‘..‘9‘ as c -> (int_of_char c) - (int_of_char ‘0‘)

#| _ -> raise (Failure "not a digit");;

int_of_digit : char -> int = <fun>

#let rec integer n = function

# [< ’ ‘0‘..‘9‘ as c; (integer (10*n + int_of_digit c)) r >] -> r

#| [< >] -> n;;

integer : int -> char stream -> int = <fun>

#(* The lexical analyzer *)
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#let rec lexer s = match s with

# [< ’‘(‘; spaces _ >] -> [< ’LPAR; lexer s >]

#| [< ’‘)‘; spaces _ >] -> [< ’RPAR; lexer s >]

#| [< ’‘+‘; spaces _ >] -> [< ’PLUS; lexer s >]

#| [< ’‘-‘; spaces _ >] -> [< ’MINUS; lexer s >]

#| [< ’‘*‘; spaces _ >] -> [< ’TIMES; lexer s >]

#| [< ’‘/‘; spaces _ >] -> [< ’DIV; lexer s >]

#| [< ’‘0‘..‘9‘ as c; (integer (int_of_digit c)) n; spaces _ >]

# -> [< ’INT n; lexer s >];;

lexer : char stream -> token stream = <fun>

The parser has the same shape as the grammar:

#let rec expr = function

# [< ’INT n >] -> n

#| [< ’PLUS; expr e1; expr e2 >] -> e1+e2

#| [< ’MINUS; expr e1; expr e2 >] -> e1-e2

#| [< ’TIMES; expr e1; expr e2 >] -> e1*e2

#| [< ’DIV; expr e1; expr e2 >] -> e1/e2;;

expr : token stream -> int = <fun>

#expr (lexer (stream_of_string "1"));;

- : int = 1

#expr (lexer (stream_of_string "+ 1 * 2 4"));;

- : int = 9

11.2, p. 94

The only new function that we need is a function taking as argument a character stream, and
returning the first identifier of that stream. It could be written as:

#let ident_buf = make_string 8 ‘ ‘;;

ident_buf : string = " "

#let rec ident len = function

# [< ’ ‘a‘..‘z‘|‘A‘..‘Z‘ as c;

# (if len >= 8 then ident len

# else begin

# set_nth_char ident_buf len c;

# ident (succ len)

# end) s >] -> s

#| [< >] -> sub_string ident_buf 0 len;;

ident : int -> char stream -> string = <fun>

The lexical analyzer will first try to recognize an alphabetic character c, then put c at position 0 of
ident_buf, and call ident 1 on the rest of the character stream. Alphabetic characters encountered
will be stored in the string buffer ident_buf, up to the 8th. Further alphabetic characters will be
skipped. Finally, a substring of the buffer will be returned as result.
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#let s = stream_of_string "toto 1";;

s : char stream = <abstract>

#ident 0 s;;

- : string = "toto"

#(* Let us see what remains in the stream *)

#match s with [< ’c >] -> c;;

- : char = ‘ ‘

#let s = stream_of_string "LongIdentifier ";;

s : char stream = <abstract>

#ident 0 s;;

- : string = "LongIden"

#match s with [< ’c >] -> c;;

- : char = ‘ ‘

The definitions of the new token type and of the lexical analyzer is trivial, and we shall omit
them. A slightly more complex lexical analyzer recognizing identifiers (lowercase only) is given in
section 13.2.1 in this part.

12.1, p. 99

(* main.ml *)

let chars = counter__new 0;;

let lines = counter__new 0;;

let count_file filename =

let in_chan = open_in filename in

try

while true do

let c = input_char in_chan in

counter__incr chars;

if c = ‘\n‘ then counter__incr lines

done

with End_of_file ->

close_in in_chan

;;

for i = 1 to vect_length sys__command_line - 1 do

count_file sys__command_line.(i)

done;

print_int (counter__read chars);

print_string " characters, ";

print_int (counter__read lines);

print_string " lines.\n";

exit 0
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;;



154 Part II. Functional programming using Caml Light



Chapter 19

Conclusion and further reading

We have not been exhaustive in the description of the Caml Light features. We only introduced
general concepts in functional programming, and we have insisted on the features used in the
prototyping of ASL: a tiny model of Caml Light typing and semantics. The rest of this document
describes exhaustively the Caml Light language, its libraries, commands and extensions.

Description about “Caml Strong” and useful information about programming in Caml can be
found in [9] and [35].

An introduction to lambda-calculus and type systems can be found in [17], [12] and [4].
The description of the implementation of call-by-value functional programming languages can

be found in [19].
The implementation of lazy functional languages is described in [27]1. An introduction to

programming in lazy functional languages can be found in [5].
See also the bibliography given at the end of the book for further reading about ML and its

implementation.

1translated in French as [28].
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Part III

The Caml Light language
reference manual
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Chapter 20

The Caml Light language reference
manual

Foreword

This document is intended as a reference manual for the Caml Light language. It lists all language
constructs, and gives their precise syntax and informal semantics. It is by no means a tutorial
introduction to the language: there is not a single example. A good working knowledge of the
language, as provided by part II, Functional programming using Caml Light, is assumed.

No attempt has been made at mathematical rigor: words are employed with their intuitive
meaning, without further definition. As a consequence, the typing rules have been left out, by lack
of the mathematical framework required to express them, while they are definitely part of a full
formal definition of the language. The reader interested in truly formal descriptions of languages
from the ML family is referred to The definition of Standard ML and Commentary on Standard
ML, by Milner, Tofte and Harper, MIT Press.

Warning

Even though there is currently only one implementation of the Caml Light language, this document
carefully distinguishes the language and its implementation(s). Implementations can provide extra
language constructs; moreover, all points left unspecified in this reference manual can be interpreted
as the language implementor wishes. All these implementation-dependent features are of course
subject to change in future releases; only the features specified in this reference manual can be
relied upon.

Notations

The syntax of the language is given in BNF-like notation. Terminal symbols are set in typewriter
font (like this). Non-terminal symbols are set in italic font (like that). Square brackets [. . .]
denote optional components. Curly brackets {. . .} denotes zero, one or several repetitions of the
enclosed components. Curly bracket with a trailing plus sign {. . .}+ denote one or several repetitions
of the enclosed components. Parentheses (. . .) denote grouping.

163
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20.1 Lexical conventions

Blanks

The following characters are considered as blanks: space, newline, horizontal tabulation, carriage
return, line feed and form feed. Blanks are ignored, but they separate adjacent identifiers, literals
and keywords that would otherwise be confused as one single identifier, literal or keyword.

Comments

Comments are introduced by the two characters (*, with no intervening blanks, and terminated
by the characters *), with no intervening blanks. Comments are treated as blank characters.
Comments do not occur inside string or character literals. Nested comments are correctly handled.

Identifiers

ident ::= letter {letter | 0 . . . 9 | _}

letter ::= A . . . Z | a . . . z

Identifiers are sequences of letters, digits and _ (the underscore character), starting with a letter.
Letters contain at least the 52 lowercase and uppercase letters from the ASCII set. Implementations
can recognize as letters other characters from the extended ASCII set. Identifiers cannot contain
two adjacent underscore characters (__). Implementation may limit the number of characters of an
identifier, but this limit must be above 256 characters. All characters in an identifier are meaningful.

Integer literals

integer-literal ::= [-] {0 . . . 9}+

| [-] (0x | 0X) {0 . . . 9 | A . . . F | a . . . f}+

| [-] (0o | 0O) {0 . . . 7}+

| [-] (0b | 0B) {0 . . . 1}+

An integer literal is a sequence of one or more digits, optionally preceded by a minus sign. By
default, integer literals are in decimal (radix 10). The following prefixes select a different radix:

0x, 0X hexadecimal (radix 16)
0o, 0O octal (radix 8)
0b, 0B binary (radix 2).

(The initial ”0” is the digit zero; the ”O” for octal is the letter O.)

Floating-point literals

float-literal ::= [-] {0 . . . 9}+ [. {0 . . . 9}] [(e | E) [+ | -] {0 . . . 9}+]

Floating-point decimals consist in an integer part, a decimal part and an exponent part. The
integer part is a sequence of one or more digits, optionally preceded by a minus sign. The decimal
part is a decimal point followed by zero, one or more digits. The exponent part is the character e
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or E followed by an optional + or - sign, followed by one or more digits. The decimal part or the
exponent part can be omitted, but not both to avoid ambiguity with integer literals.

Character literals

char-literal ::= ‘ regular-char ‘
| ‘ \ (\ | ‘ | n | t | b | r) ‘
| ‘ \ (0 . . . 9) (0 . . . 9) (0 . . . 9) ‘

Character literals are delimited by ‘ (backquote) characters. The two backquotes enclose either
one character different from ‘ and \, or one of the escape sequences below:

Sequence Character denoted

\\ backslash (\)
\‘ backquote (‘)
\n newline (LF)
\r return (CR)
\t horizontal tabulation (TAB)
\b backspace (BS)
\ddd the character with ASCII code ddd in decimal

String literals

string-literal ::= " {string-character} "

string-character ::= regular-char
| \ (\ | " | n | t | b | r)
| \ (0 . . . 9) (0 . . . 9) (0 . . . 9)

String literals are delimited by " (double quote) characters. The two double quotes enclose a
sequence of either characters different from " and \, or escape sequences from the table below:

Sequence Character denoted

\\ backslash (\)
\" double quote (")
\n newline (LF)
\r return (CR)
\t horizontal tabulation (TAB)
\b backspace (BS)
\ddd the character with ASCII code ddd in decimal

Implementations must support string literals up to 216 − 1 characters in length (65535 charac-
ters).

Keywords

The identifiers below are reserved as keywords, and cannot be employed otherwise:
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and as begin do done downto

else end exception for fun function

if in let match mutable not

of or prefix rec then to

try type value where while with

The following character sequences are also keywords:

# ! != & ( ) * *. + +.

, - -. -> . .( / /. : ::

:= ; ;; < <. <- <= <=. <> <>.

= =. == > >. >= >=. @ [ [|

] ^ _ __ { | |] } ’

Ambiguities

Lexical ambiguities are resolved according to the “longest match” rule: when a character sequence
can be decomposed into two tokens in several different ways, the decomposition retained is the one
with the longest first token.

20.2 Global names

Global names are used to denote value variables, value constructors (constant or non-constant),
type constructors, and record labels. Internally, a global name consists of two parts: the name of
the defining module (the module name), and the name of the global inside that module (the local
name). The two parts of the name must be valid identifiers. Externally, global names have the
following syntax:

global-name ::= ident
| ident1 __ ident2

The form ident1 __ ident2 is called a qualified name. The first identifier is the module name, the
second identifier is the local name. The form ident is called an unqualified name. The identifier is
the local name; the module name is omitted. The compiler infers this module name following the
completion rules given below, therefore transforming the unqualified name into a full global name.

To complete an unqualified identifier, the compiler checks a list of modules, the opened modules,
to see if they define a global with the same local name as the unqualified identifier. When one is
found, the identifier is completed into the full name of that global. That is, the compiler takes as
module name the name of an opened module that defines a global with the same local name as the
unqualified identifier. If several modules satisfy this condition, the one that comes first in the list
of opened modules is selected.

The list of opened modules always includes the module currently being compiled (checked first).
(In the case of a toplevel-based implementation, this is the module where all toplevel definitions are
entered.) It also includes a number of standard library modules that provide the initial environment
(checked last). In addition, the #open and #close directives can be used to add or remove modules
from that list. The modules added with #open are checked after the module currently being
compiled, but before the initial standard library modules.
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variable ::= global-name
| prefix operator-name

operator-name ::= + | - | * | / | mod | +. | -. | *. | /.
| @ | ^ | ! | := | = | <> | == | != | !
| < | <= | > | <= | <. | <=. | >. | <=.

cconstr ::= global-name
| []

| ()

ncconstr ::= global-name
| prefix ::

typeconstr ::= global-name

label ::= global-name

Depending on the context, global names can stand for global variables (variable), constant value
constructors (cconstr), non-constant value constructors (ncconst), type constructors (typeconstr),
or record labels (label). For variables and value constructors, special names built with prefix and
an operator name are recognized. The tokens [] and () are also recognized as built-in constant
constructors (the empty list and the unit value).

The syntax of the language restricts labels and type constructors to appear in certain positions,
where no other kind of global names are accepted. Hence labels and type constructors have their
own name spaces. Value constructors and value variables live in the same name space: a global
name in value position is interpreted as a value constructor if it appears in the scope of a type
declaration defining that constructor; otherwise, the global name is taken to be a value variable.
For value constructors, the type declaration determines whether a constructor is constant or not.

20.3 Values

This section describes the kinds of values that are manipulated by Caml Light programs.

20.3.1 Base values

Integer numbers

Integer values are integer numbers from −231 to 231 − 1, that is −2147483648 to 2147483647.
Implementations may support a wider range of integer values.

Floating-point numbers

Floating-point values are numbers in floating-point representation. Everything about floating-point
values is implementation-dependent, including the range of representable numbers, the number of
significant digits, and the way floating-point results are rounded.
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Characters

Character values are represented as 8-bit integers between 0 and 255. Character codes between
0 and 127 are interpreted following the ASCII standard. The interpretation of character codes
between 128 and 255 is implementation-dependent.

Character strings

String values are finite sequences of characters. Implementations must support strings up to 216−1
characters in length (65535 characters). Implementations may support longer strings.

20.3.2 Tuples

Tuples of values are written (v1, . . . , vn), standing for the n-tuple of values v1 to vn. Tuples of up to
214− 1 elements (16383 elements) must be supported, though implementations may support tuples
with more elements.

20.3.3 Records

Record values are labeled tuples of values. The record value written {label1 = v1; . . . ; labeln = vn}
associates the value vi to the record label labeli, for i = 1 . . . n. Records with up to 214 − 1 fields
(16383 fields) must be supported, though implementations may support records with more fields.

20.3.4 Arrays

Arrays are finite, variable-sized sequences of values of the same type. Arrays of length up to 214−1
(16383 elements) must be supported, though implementations may support larger arrays.

20.3.5 Variant values

Variant values are either a constant constructor, or a pair of a non-constant constructor and a
value. The former case is written cconstr; the latter case is written ncconstr(v), where v is said to
be the argument of the non-constant constructor ncconstr.

The following constants are treated like built-in constant constructors:

false the boolean false
true the boolean true
() the “unit” value
[] the empty list

20.3.6 Functions

Functional values are mappings from values to values.
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20.4 Type expressions

typexpr ::= ’ ident
| ( typexpr )
| typexpr -> typexpr
| typexpr {* typexpr}+

| typeconstr
| typexpr typeconstr
| ( typexpr {, typexpr} ) typeconstr

The table below shows the relative precedences and associativity of operators and non-closed
type constructions. The constructions with higher precedences come first.

Operator Associativity

Type constructor application –
* –
-> right

Type expressions denote types in definitions of data types as well as in type constraints over
patterns and expressions.

Type variables

The type expression ’ ident stands for the type variable named ident. In data type definitions, type
variables are names for the data type parameters. In type constraints, they represent unspecified
types that can be instantiated by any type to satisfy the type constraint.

Parenthesized types

The type expression ( typexpr ) denotes the same type as typexpr.

Function types

The type expression typexpr1 -> typexpr2 denotes the type of functions mapping arguments of
type typexpr1 to results of type typexpr2.

Tuple types

The type expression typexpr1 * . . . * typexprn denotes the type of tuples whose elements belong to
types typexpr1, . . . typexprn respectively.

Constructed types

Type constructors with no parameter, as in typeconstr, are type expressions.

The type expression typexpr typeconstr, where typeconstr is a type constructor with one param-
eter, denotes the same type as the type constructor typeconstr, where the parameter to typeconstr
has been substituted by the type typexpr.



170 Part III. The Caml Light language reference manual

The type expression (typexpr1, . . . , typexprn) typeconstr, where typeconstr is a type construc-
tor with n parameters, denotes the same type as the type constructor typeconstr, where the pa-
rameters to typconstr have been substituted by the types typexpr1 through typexprn, respectively.

20.5 Constants

constant ::= integer-literal
| float-literal
| char-literal
| string-literal
| cconstr

The syntactic class of constants comprises literals from the four base types (integers, floating-
point numbers, characters, character strings), and constant constructors.

20.6 Patterns

pattern ::= ident
| _

| pattern as ident
| ( pattern )

| ( pattern : typexpr )
| pattern | pattern
| constant
| ncconstr pattern
| pattern , pattern {, pattern}
| { label = pattern {; label = pattern} }
| [ ]

| [ pattern {; pattern} ]
| pattern :: pattern

The table below shows the relative precedences and associativity of operators and non-closed
pattern constructions. The constructions with higher precedences come first.

Operator Associativity

Constructor application –
:: right
, –
| left
as –

Patterns are templates that allow selecting data structures of a given shape, and binding iden-
tifiers to components of the data structure. This selection operation is called pattern matching;
its outcome is either “this value does not match this pattern”, or “this value matches this pattern,
resulting in the following bindings of identifiers to values”.
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Variable patterns

A pattern that consists in an identifier matches any value, binding the identifier to the value. The
pattern _ also matches any value, but does not bind any identifier.

Alias patterns

The pattern pattern1 as ident matches the same values as pattern1. If the matching against
pattern1 is successful, the identifier ident is bound to the matched value, in addition to the bindings
performed by the matching against pattern1.

Parenthesized patterns

The pattern ( pattern1 ) matches the same values as pattern1. A type constraint can appear in a
parenthesized patterns, as in ( pattern1 : typexpr ). This constraint forces the type of pattern1 to
be compatible with type.

“Or” patterns

The pattern pattern1 | pattern2 represents the logical “or” of the two patterns pattern1 and
pattern2. A value matches pattern1 | pattern2 either if it matches pattern1 or if it matches pattern2.
The two sub-patterns pattern1 and pattern2 must contain no identifiers. Hence no bindings are
returned by matching against an “or” pattern.

Constant patterns

A pattern consisting in a constant matches the values that are equal to this constant.

Variant patterns

The pattern ncconstr pattern1 matches all variants whose constructor is equal to ncconstr, and
whose argument matches pattern1.

The pattern pattern1 :: pattern2 matches non-empty lists whose heads match pattern1, and
whose tails match pattern2. This pattern behaves like prefix :: ( pattern1 , pattern2 ).

The pattern [ pattern1 ; . . . ; patternn ] matches lists of length n whose elements match
pattern1 . . . patternn, respectively. This pattern behaves like pattern1 :: . . . :: patternn :: [].

Tuple patterns

The pattern pattern1 , . . . , patternn matches n-tuples whose components match the patterns
pattern1 through patternn. That is, the pattern matches the tuple values (v1, . . . , vn) such that
patterni matches v i for i = 1, . . . , n.

Record patterns

The pattern { label1 = pattern1 ; . . . ; labeln = patternn } matches records that define at least
the labels label1 through labeln, and such that the value associated to labeli match the pattern
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patterni, for i = 1, . . . , n. The record value can define more labels than label1 . . . labeln; the values
associated to these extra labels are not taken into account for matching.
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20.7 Expressions

expr ::= ident
| variable
| constant
| ( expr )
| begin expr end
| ( expr : typexpr )
| expr , expr {, expr}
| ncconstr expr
| expr :: expr
| [ expr {; expr} ]
| [| expr {; expr} |]
| { label = expr {; label = expr} }
| expr expr
| prefix-op expr
| expr infix-op expr
| expr . label
| expr . label <- expr
| expr .( expr )
| expr .( expr ) <- expr
| expr & expr
| expr or expr
| if expr then expr [else expr]
| while expr do expr done
| for ident = expr (to | downto) expr do expr done
| expr ; expr
| match expr with simple-matching
| fun multiple-matching
| function simple-matching
| try expr with simple-matching
| let [rec] let-binding {and let-binding} in expr

simple-matching ::= pattern -> expr {| pattern -> expr}

multiple-matching ::= pattern-list -> expr {| pattern-list -> expr}

pattern-list ::= pattern {pattern}

let-binding ::= pattern = expr
| variable pattern-list = expr

prefix-op ::= - | -. | !

infix-op ::= + | - | * | / | mod | +. | -. | *. | /. | @ | ^ | ! | :=
| = | <> | == | != | < | <= | > | <= | <. | <=. | >. | <=.

The table below shows the relative precedences and associativity of operators and non-closed
constructions. The constructions with higher precedence come first.
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Construction or operator Associativity

! –
. .( –
function application right
constructor application –
- -. (prefix) –
mod left
* *. / /. left
+ +. - -. left
:: right
@ ^ right
comparisons (= == < etc.) left
not –
& left
or left
, –
<- := right
if –
; right
let match fun function try –

20.7.1 Simple expressions

Constants

Expressions consisting in a constant evaluate to this constant.

Variables

Expressions consisting in a variable evaluate to the value bound to this variable in the current
evaluation environment. The variable can be either a qualified identifier or a simple identifier.
Qualified identifiers always denote global variables. Simple identifiers denote either a local variable,
if the identifier is locally bound, or a global variable, whose full name is obtained by qualifying the
simple identifier, as described in section 20.2.

Parenthesized expressions

The expressions ( expr ) and begin expr end have the same value as expr. Both constructs are
semantically equivalent, but it is good style to use begin . . . end inside control structures:

if . . . then begin . . . ; . . . end else begin . . . ; . . . end

and ( . . . ) for the other grouping situations.

Parenthesized expressions can contain a type constraint, as in ( expr : type ). This constraint
forces the type of expr to be compatible with type.
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Function abstraction

The most general form of function abstraction is:

fun pattern11 . . . patternm1 -> expr1
| . . .

| pattern1n . . . patternmn -> exprn

This expression evaluates to a functional value with m curried arguments. When this function is ap-
plied to m values v1 . . . vm, the values are matched against each pattern row pattern1i . . . patternmi ,
for i from 1 to n. If one of these matchings succeeds, that is if the value vj matches the pattern

patternji for all j = 1 . . . m, then the expression expri associated to the selected pattern row is
evaluated, and its value becomes the value of the function application. The evaluation of expri
takes place in an environment enriched by the bindings performed during the matching.

If several pattern rows match the arguments, the one that occurs first in the function definition
is selected. If none of the pattern rows matches the argument, the exception Match_failure is
raised.

If the function above is applied to less than m arguments, a functional value is returned,
that represents the partial application of the function to the provided arguments. This partial
application is a function that, when applied to the remaining arguments, matches all arguments
against the pattern rows as described above. Matching does not start until all m arguments have
been provided to the function; hence, partial applications of the function to less than m arguments
never raise Match_failure.

All pattern rows in the function body must contain the same number of patterns. A variable
must not be bound more than once in one pattern row.

Functions with only one argument can be defined with the function keyword instead of fun:

function pattern1 -> expr1
| . . .

| patternn -> exprn

The function thus defined behaves exactly as described above. The only difference between the two
forms of function definition is how a parsing ambiguity is resolved. The two forms cconstr pattern
(two patterns in a row) and ncconstr pattern (one pattern) cannot be distinguished syntactically.
Function definitions introduced by fun resolve the ambiguity to the former form; function definitions
introduced by function resolve it to the latter form (the former form makes no sense in this case).

Function application

Function application is denoted by juxtaposition of expressions. The expression expr1 expr2 . . . exprn
evaluates expr1 . . . exprn. The expression expr1 must evaluate to a functional value, which is then
applied to the values of expr2 . . . exprn. The order in which the expressions expr1 . . . exprn are
evaluated is not specified.

Local definitions

The let and let rec constructs bind variables locally. The construct

let pattern1 = expr1 and . . . and patternn = exprn in expr
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evaluates expr1 . . . exprn in some unspecified order, then matches their values against the patterns
pattern1 . . . patternn. If the matchings succeed, expr is evaluated in the environment enriched by
the bindings performed during matching, and the value of expr is returned as the value of the whole
let expression. If one of the matchings fails, the exception Match_failure is raised.

An alternate syntax is provided to bind variables to functional values: instead of writing

ident = fun pattern1 . . . patternm -> expr

in a let expression, one may instead write

ident pattern1 . . . patternm = expr

Both forms bind ident to the curried function with m arguments and only one case,

pattern1 . . . patternm -> expr.

Recursive definitions of variables are introduced by let rec:

let rec pattern1 = expr1 and . . . and patternn = exprn in expr

The only difference with the let construct described above is that the bindings of variables to
values performed by the pattern-matching are considered already performed when the expressions
expr1 to exprn are evaluated. That is, the expressions expr1 to exprn can reference identifiers that
are bound by one of the patterns pattern1, . . . ,patternn, and expect them to have the same value
as in expr, the body of the let rec construct.

The recursive definition is guaranteed to behave as described above if the expressions expr1
to exprn are function definitions (fun . . . or function . . .), and the patterns pattern1 . . . patternn
consist in a single variable, as in:

let rec ident1 = fun . . . and . . . and identn = fun . . . in expr

This defines ident1 . . . identn as mutually recursive functions local to expr. The behavior of other
forms of let rec definitions is implementation-dependent.

20.7.2 Control constructs

Sequence

The expression expr1 ; expr2 evaluates expr1 first, then expr2, and returns the value of expr2.

Conditional

The expression if expr1 then expr2 else expr3 evaluates to the value of expr2 if expr1 evaluates
to the boolean true, and to the value of expr3 if expr1 evaluates to the boolean false.

The else expr3 part can be omitted, in which case it defaults to else ().
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Case expression

The expression

match expr
with pattern1 -> expr1

| . . .

| patternn -> exprn

matches the value of expr against the patterns pattern1 to patternn. If the matching against
patterni succeeds, the associated expression expri is evaluated, and its value becomes the value of
the whole match expression. The evaluation of expri takes place in an environment enriched by
the bindings performed during matching. If several patterns match the value of expr, the one that
occurs first in the match expression is selected. If none of the patterns match the value of expr,
the exception Match_failure is raised.

Boolean operators

The expression expr1 & expr2 evaluates to true if both expr1 and expr2 evaluate to true; otherwise,
it evaluates to false. The first component, expr1, is evaluated first. The second component, expr2,
is not evaluated if the first component evaluates to false. Hence, the expression expr1 & expr2
behaves exactly as

if expr1 then expr2 else false.

The expression expr1 or expr2 evaluates to true if one of expr1 and expr2 evaluates to true;
otherwise, it evaluates to false. The first component, expr1, is evaluated first. The second
component, expr2, is not evaluated if the first component evaluates to true. Hence, the expression
expr1 or expr2 behaves exactly as

if expr1 then true else expr2 .

Loops

The expression while expr1 do expr2 done repeatedly evaluates expr2 while expr1 evaluates to
true. The loop condition expr1 is evaluated and tested at the beginning of each iteration. The
whole while . . . done expression evaluates to the unit value ().

The expression for ident = expr1 to expr2 do expr3 done first evaluates the expressions expr1
and expr2 (the boundaries) into integer values n and p. Then, the loop body expr3 is repeatedly
evaluated in an environment where the local variable named ident is successively bound to the
values n, n+ 1, . . . , p− 1, p. The loop body is never evaluated if n > p.

The expression for ident = expr1 downto expr2 do expr3 done first evaluates the expressions
expr1 and expr2 (the boundaries) into integer values n and p. Then, the loop body expr3 is
repeatedly evaluated in an environment where the local variable named ident is successively bound
to the values n, n− 1, . . . , p+ 1, p. The loop body is never evaluated if n < p.

In both cases, the whole for expression evaluates to the unit value ().
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Exception handling

The expression

try expr
with pattern1 -> expr1

| . . .

| patternn -> exprn

evaluates the expression expr and returns its value if the evaluation of expr does not raise any
exception. If the evaluation of expr raises an exception, the exception value is matched against the
patterns pattern1 to patternn. If the matching against patterni succeeds, the associated expression
expri is evaluated, and its value becomes the value of the whole try expression. The evaluation of
expri takes place in an environment enriched by the bindings performed during matching. If several
patterns match the value of expr, the one that occurs first in the try expression is selected. If none
of the patterns matches the value of expr, the exception value is raised again, thereby transparently
“passing through” the try construct.

20.7.3 Operations on data structures

Products

The expression expr1 , . . . , exprn evaluates to the n-tuple of the values of expressions expr1 to
exprn. The evaluation order for the subexpressions is not specified.

Variants

The expression ncconstr expr evaluates to the variant value whose constructor is ncconstr, and
whose argument is the value of expr.

For lists, some syntactic sugar is provided. The expression expr1 :: expr2 stands for the
constructor prefix :: applied to the argument ( expr1 , expr2 ), and therefore evaluates to
the list whose head is the value of expr1 and whose tail is the value of expr2. The expression
[ expr1 ; . . . ; exprn ] is equivalent to expr1 :: . . . :: exprn :: [], and therefore evaluates to the
list whose elements are the values of expr1 to exprn.

Records

The expression { label1 = expr1 ; . . . ; labeln = exprn } evaluates to the record value {label1 =
v1; . . . ; labeln = vn}, where vi is the value of expri for i = 1, . . . , n. The labels label1 to labeln must
all belong to the same record types; all labels belonging to this record type must appear exactly
once in the record expression, though they can appear in any order. The order in which expr1 to
exprn are evaluated is not specified.

The expression expr1 . label evaluates expr1 to a record value, and returns the value associated
to label in this record value.

The expression expr1 . label <- expr2 evaluates expr1 to a record value, which is then modified
in-place by replacing the value associated to label in this record by the value of expr2. This
operation is permitted only if label has been declared mutable in the definition of the record type.
The whole expression expr1 . label <- expr2 evaluates to the unit value ().
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Arrays

The expression [| expr1 ; . . . ; exprn |] evaluates to a n-element array, whose elements are
initialized with the values of expr1 to exprn respectively. The order in which these expressions are
evaluated is unspecified.

The expression expr1 .( expr2 ) is equivalent to the application vect_item expr1 expr2. In the
initial environment, the identifier vect_item resolves to a built-in function that returns the value
of element number expr2 in the array denoted by expr1. The first element has number 0; the last
element has number n − 1, where n is the size of the array. The exception Invalid_argument is
raised if the access is out of bounds.

The expression expr1 .( expr2 ) <- expr3 is equivalent to vect_assign expr1 expr2 expr3.
In the initial environment, the identifier vect_assign resolves to a built-in function that modifies
in-place the array denoted by expr1, replacing element number expr2 by the value of expr3. The
exception Invalid_argument is raised if the access is out of bounds. The built-in function returns
(). Hence, the whole expression expr1 .( expr2 ) <- expr3 evaluates to the unit value ().

This behavior of the two constructs expr1 .( expr2 ) and expr1 .( expr2 ) <- expr3 may change
if the meaning of the identifiers vect_item and vect_assign is changed, either by redefinition or
by modification of the list of opened modules. See the discussion below on operators.

20.7.4 Operators

The operators written infix-op in the grammar above can appear in infix position (between two
expressions). The operators written prefix-op in the grammar above can appear in prefix position
(in front of an expression).

The expression prefix-op expr is interpreted as the application ident expr, where ident is
the identifier associated to the operator prefix-op in the table below. Similarly, the expression
expr1 infix-op expr2 is interpreted as the application ident expr1 expr2, where ident is the iden-
tifier associated to the operator infix-op in the table below. The identifiers written ident above
are then evaluated following the rules in section 20.7.1. In the initial environment, they evaluate
to built-in functions whose behavior is described in the table. The behavior of the constructions
prefix-op expr and expr1 infix-op expr2 may change if the meaning of the identifiers associated to
prefix-op or infix-op is changed, either by redefinition of the identifiers, or by modification of the
list of opened modules, through the #open and #close directives.
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Operator Associated Behavior in the default environment
identifier

+ prefix + Integer addition.
- (infix) prefix - Integer subtraction.
- (prefix) minus Integer negation.
* prefix * Integer multiplication.
/ prefix / Integer division. Raise Division_by_zero if second argu-

ment is null. The result is unspecified if either argument is
negative.

mod prefix mod Integer modulus. Raise Division_by_zero if second argu-
ment is null. The result is unspecified if either argument is
negative.

+. prefix +. Floating-point addition.
-. (infix) prefix -. Floating-point subtraction.
-. (prefix) minus_float Floating-point negation.
*. prefix *. Floating-point multiplication.
/. prefix /. Floating-point division. The result is unspecified if second

argument is null.
@ prefix @ List concatenation.
^ prefix ^ String concatenation.
! prefix ! Dereferencing (return the current contents of a reference).
:= prefix := Reference assignment (update the reference given as first

argument with the value of the second argument).
= prefix = Structural equality test.
<> prefix <> Structural disequality test.
== prefix == Physical equality test.
!= prefix != Physical disequality test.
< prefix < Test “less than” on integers.
<= prefix <= Test “less than or equal ” on integers.
> prefix > Test “greater than” on integers.
>= prefix >= Test “greater than or equal” on integers.
<. prefix <. Test “less than” on floating-point numbers.
<=. prefix <=. Test “less than or equal ” on floating-point numbers.
>. prefix >. Test “greater than” on floating-point numbers.
>=. prefix >=. Test “greater than or equal” on floating-point numbers.

The behavior of the +, -, *, /, mod, +., -., *. or /. operators is unspecified if the result falls
outside of the range of representable integers or floating-point numbers, respectively. See chapter 21
for a more precise description of the behavior of the operators above.
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20.8 Global definitions

This section describes the constructs that bind global identifiers (value variables, value constructors,
type constructors, record labels).

20.8.1 Type definitions

type-definition ::= type typedef {and typedef }

typedef ::= type-params ident = constr-decl {| constr-decl}
| type-params ident = { label-decl {; label-decl} }
| type-params ident == typexpr
| type-params ident

type-params ::= nothing
| ’ ident
| ( ’ ident {, ’ ident} )

constr-decl ::= ident
| ident of typexpr

label-decl ::= ident : typexpr
| mutable ident : typexpr

Type definitions bind type constructors to data types: either variant types, record types, type
abbreviations, or abstract data types.

Type definitions are introduced by the type keyword, and consist in one or several simple
definitions, possibly mutually recursive, separated by the and keyword. Each simple definition
defines one type constructor.

A simple definition consists in an identifier, possibly preceded by one or several type parameters,
and followed by a data type description. The identifier is the local name of the type constructor
being defined. (The module name for this type constructor is the name of the module being
compiled.) The optional type parameters are either one type variable ’ ident, for type constructors
with one parameter, or a list of type variables (’ ident1, . . . , ’ identn), for type constructors with
several parameters. These type parameters can appear in the type expressions of the right-hand
side of the definition.

Variant types

The type definition typeparams ident = constr-decl1 | . . . | constr-decln defines a variant type. The
constructor declarations constr-decl1, . . . , constr-decln describe the constructors associated to this
variant type. The constructor declaration ident of typexpr declares the local name ident (in the
module being compiled) as a non-constant constructor, whose argument has type typexpr. The
constructor declaration ident declares the local name ident (in the module being compiled) as a
constant constructor.
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Record types

The type definition typeparams ident = { label-decl1 ; . . . ; label-decln } defines a record type. The
label declarations label-decl1, . . . , label-decln describe the labels associated to this record type. The
label declaration ident : typexpr declares the local name ident in the module being compiled as a
label, whose argument has type typexpr. The label declaration mutable ident : typexpr behaves
similarly; in addition, it allows physical modification over the argument to this label.

Type abbreviations

The type definition typeparams ident == typexpr defines the type constructor ident as an abbrevi-
ation for the type expression typexpr.

Abstract types

The type definition typeparams ident defines ident as an abstract type. When appearing in a mod-
ule interface, this definition allows exporting a type constructor while hiding how it is represented
in the module implementation.

20.8.2 Exception definitions

exception-definition ::= exception constr-decl {and constr-decl}

Exception definitions add new constructors to the built-in variant type exn of exception values.
The constructors are declared as for a definition of a variant type.

20.9 Directives

directive ::= # open string
| # close string
| # ident string

Directives control the behavior of the compiler. They apply to the remainder of the current
compilation unit.

The two directives #open and #close modify the list of opened modules, that the compiler uses
to complete unqualified identifiers, as described in section 20.2. The directive #open string adds
the module whose name is given by the string constant string to the list of opened modules, in first
position. The directive #close string removes the first occurrence of the module whose name is
given by the string constant string from the list of opened modules.

Implementations can provide other directives, provided they follow the syntax # ident string,
where ident is the name of the directive, and the string constant string is the argument to the
directive. The behavior of these additional directives is implementation-dependent.
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20.10 Module implementations

implementation ::= {impl-phrase ;;}

impl-phrase ::= expr
| value-definition
| type-definition
| exception-definition
| directive

value-definition ::= let [rec] let-binding {and let-binding}

A module implementation consists in a sequence of implementation phrases, terminated by
double semicolons. An implementation phrase is either an expression, a value definition, a type or
exception definition, or a directive. At run-time, implementation phrases are evaluated sequentially,
in the order in which they appear in the module implementation.

Implementation phrases consisting in an expression are evaluated for their side-effects.

Value definitions bind global value variables in the same way as a let . . . in . . . expression binds
local variables. The expressions are evaluated, and their values are matched against the left-hand
sides of the = sides, as explained in section 20.7.1. If the matching succeeds, the bindings of
identifiers to values performed during matching are interpreted as bindings to the global value
variables whose local name is the identifier, and whose module name is the name of the module.
If the matching fails, the exception Match_failure is raised. The scope of these bindings is the
phrases that follow the value definition in the module implementation.

Type and exception definitions introduce type constructors, variant constructors and record
labels as described in sections 20.8.1 and 20.8.2. The scope of these definitions is the phrases that
follow the value definition in the module implementation. The evaluation of an implementation
phrase consisting in a type or exception definition produces no effect at run-time.

Directives modify the behavior of the compiler on the subsequent phrases of the module im-
plementation, as described in section 20.9. The evaluation of an implementation phrase consisting
in a directive produces no effect at run-time. Directives apply only to the module currently being
compiled; in particular, they have no effect on other modules that refer to globals exported by the
module being compiled.

20.11 Module interfaces

interface ::= {intf-phrase ;;}

intf-phrase ::= value-declaration
| type-definition
| exception-definition
| directive

value-declaration ::= value ident : typexpr {and ident : typexpr}

Module interfaces declare the global objects (value variables, type constructors, variant con-
structors, record labels) that a module exports, that is, makes available to other modules. Other
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modules can refer to these globals using qualified identifiers or the #open directive, as explained in
section 20.2.

A module interface consists in a sequence of interface phrases, terminated by double semicolons.
An interface phrase is either a value declaration, a type definition, an exception definition, or a
directive.

Value declarations declare global value variables that are exported by the module implementa-
tion, and the types with which they are exported. The module implementation must define these
variables, with types at least as general as the types declared in the interface. The scope of the
bindings for these global variables extends from the module implementation itself to all modules
that refer to those variables.

Type or exception definitions introduce type constructors, variant constructors and record labels
as described in sections 20.8.1 and 20.8.2. Exception definitions and type definitions that are
not abstract type declarations also take effect in the module implementation; that is, the type
constructors, variant constructors and record labels they define are considered bound on entrance to
the module implementation, and can be referred to by the implementation phrases. Type definitions
that are not abstract type declarations must not be redefined in the module implementation. In
contrast, the type constructors that are declared abstract in a module interface must be defined in
the module implementation, with the same names.

Directives modify the behavior of the compiler on the subsequent phrases of the module inter-
face, as described in section 20.9. Directives apply only to the interface currently being compiled;
in particular, they have no effect on other modules that refer to globals exported by the interface
being compiled.
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Chapter 21

The core library

This chapter describes the functions provided by the Caml Light core library. This library is special
in two ways:

• It is automatically linked with the user’s object code files by the camlc command (chapter 25).
Hence, the globals defined by these libraries can be used in standalone programs without
having to add any .zo file on the command line for the linking phase. Similarly, in interactive
use, these globals can be used in toplevel phrases without having to load any .zo file in
memory.

• The interfaces for the modules below are automatically “opened” when a compilation starts,
or when the toplevel system is launched. Hence, it is possible to use unqualified identifiers to
refer to the functions provided by these modules, without adding #open directives. Actually,
the list of automatically opened modules depend on the -O option given to the compiler or
to the toplevel system:

-O option Opened modules (reverse opening order)

-O cautious (default) io, eq, int, float, ref, pair, list, vect, char,
string, bool, exc, stream

-O fast io, eq, int, float, ref, pair, list, fvect,
fchar, fstring, bool, exc, stream

-O none none

Conventions

For easy reference, the modules are listed below in alphabetical order of module names. For each
module, the declarations from its interface file are printed one by one in typewriter font, followed
by a short comment. All modules and the identifiers they export are indexed at the end of this
report.

21.1 bool: Boolean operations

The boolean conjunction is written e1 & e2. The boolean disjunction is written e1 or e2.
Both constructs are sequential, left-to-right: e2 is evaluated only if needed. Actually,
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e1 & e2 is equivalent to if e1 then e2 else false, and e1 or e2 is equivalent to
if e1 then true else e2.

value prefix not : bool -> bool

The boolean negation.

21.2 char: Character operations

value int_of_char : char -> int

Return the ASCII code of the argument.

value char_of_int : int -> char

Return the character with the given ASCII code. Raise Invalid_argument "char_of_int"

if the argument is outside the range 0–255.

value char_for_read : char -> string

Return a string representing the given character, with special characters escaped following
the lexical conventions of Caml Light.

21.3 eq: Equality functions

value prefix = : ’a -> ’a -> bool

e1 = e2 tests for structural equality of e1 and e2. Mutable structures (e.g., references) are
equal if and only if their current contents are structurally equal, even if the two mutable
objects are not the same physical object. Equality between functional values raises
Invalid_argument. Equality between cyclic data structures may not terminate.

value prefix <> : ’a -> ’a -> bool

Negation of prefix =.

value prefix == : ’a -> ’a -> bool

e1 == e2 tests for physical equality of e1 and e2. On integers and characters, it is the same
as structural equality. On mutable structures, e1 == e2 is true if and only if physical
modification of e1 also affects e2. On non-mutable structures, the behavior of prefix == is
implementation-dependent, except that e1 == e2 implies e1 = e2.

value prefix != : ’a -> ’a -> bool

Negation of prefix ==.
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21.4 exc: Exceptions

value raise : exn -> ’a

Raise the given exception value.

A few general-purpose predefined exceptions.

exception Out_of_memory

Raised by the garbage collector when there is insufficient memory to complete the
computation.

exception Invalid_argument of string

Raised by some library functions to signal that the given arguments do not make sense.

exception Failure of string

Raised by some library functions to signal that they are undefined on the given arguments.

exception Not_found

Raised by library search functions when the required object could not be found.

exception Exit

This exception is not raised by any library function. It is provided for use in your programs.

value failwith : string -> ’a

Raise exception Failure with the given string.

value invalid_arg : string -> ’a

Raise exception Invalid_argument with the given string.

21.5 fchar: Character operations, without sanity checks

This module implements the same functions as the char module, but does not perform
boundary checks on the arguments of the functions. The functions are therefore faster than
those in the char module, but calling these functions with incorrect parameters (that is,
parameters that would cause the Invalid_argument exception to be raised by the
corresponding functions in the char module) can crash the program.
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21.6 float: Operations on floating-point numbers

value int_of_float : float -> int

Truncate the given float to an integer value. The result is unspecified if it falls outside the
range of representable integers.

value float_of_int : int -> float

Convert an integer to floating-point.

value minus : float -> float

value minus_float : float -> float

Unary negation.

value prefix + : float -> float -> float

value prefix +. : float -> float -> float

value add_float : float -> float -> float

Addition.

value prefix - : float -> float -> float

value prefix -. : float -> float -> float

value sub_float : float -> float -> float

Subtraction.

value prefix * : float -> float -> float

value prefix *. : float -> float -> float

value mult_float : float -> float -> float

Product.

value prefix / : float -> float -> float

value prefix /. : float -> float -> float

value div_float : float -> float -> float

Division. The result is unpredictable if the dividend is 0.0.

value eq_float : float -> float -> bool

value prefix =. : float -> float -> bool

Floating-point equality. Equivalent to generic equality, but faster.

value neq_float : float -> float -> bool

value prefix <>. : float -> float -> bool

Negation of eq_float.
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value prefix < : float -> float -> bool

value prefix <. : float -> float -> bool

value lt_float : float -> float -> bool

value prefix > : float -> float -> bool

value prefix >. : float -> float -> bool

value gt_float : float -> float -> bool

value prefix <= : float -> float -> bool

value prefix <=. : float -> float -> bool

value le_float : float -> float -> bool

value prefix >= : float -> float -> bool

value prefix >=. : float -> float -> bool

value ge_float : float -> float -> bool

Usual comparisons between floating-point numbers.

value exp : float -> float

value log : float -> float

value sqrt : float -> float

value power : float -> float -> float

value sin : float -> float

value cos : float -> float

value tan : float -> float

value asin : float -> float

value acos : float -> float

value atan : float -> float

value atan2 : float -> float -> float

Usual transcendental functions on floating-point numbers.

value abs_float : float -> float

Return the absolute value of the argument.

value string_of_float : float -> string

Convert the given float to its decimal representation.

value float_of_string : string -> float

Convert the given string to a float, in decimal. The result is unspecified if the given string is
not a valid representation of a float.

21.7 fstring: String operations, without sanity checks

This module implements the same functions as the string module, but does not perform
boundary checks on the arguments of the functions. The functions are therefore faster than
those in the string module, but calling these functions with incorrect parameters (that is,
parameters that would cause the Invalid_argument exception to be raised by the
corresponding functions in the string module) can crash the program.
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21.8 fvect: Operations on arrays, without sanity checks

This module implements the same functions as the vect module, but does not perform
boundary checks on the arguments of the functions. The functions are therefore faster than
those in the vect module, but calling these functions with incorrect parameters (that is,
parameters that would cause the Invalid_argument exception to be raised by the
corresponding functions in the vect module) can crash the program.

21.9 int: Operations on integers

Integers are 31 bits wide. All operations are taken modulo 231. They do not fail on overflow.

exception Division_by_zero

value minus : int -> int

value minus_int : int -> int

Unary negation. You can write -e instead of minus e.

value succ : int -> int

succ x is x+1.

value pred : int -> int

pred x is x-1.

value prefix + : int -> int -> int

value add_int : int -> int -> int

Addition.

value prefix - : int -> int -> int

value sub_int : int -> int -> int

Subtraction.

value prefix * : int -> int -> int

value mult_int : int -> int -> int

Multiplication.

value prefix / : int -> int -> int

value div_int : int -> int -> int

Integer division. Raise Division_by_zero if the second argument is 0. Give unpredictable
results if either argument is negative.

value prefix mod : int -> int -> int
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Remainder. Raise Division_by_zero if the second argument is 0. Give unpredictable
results if either argument is negative.

value eq_int : int -> int -> bool

Integer equality. Equivalent to generic equality, but faster.

value neq_int : int -> int -> bool

Negation of eq_int.

value prefix < : int -> int -> bool

value lt_int : int -> int -> bool

value prefix > : int -> int -> bool

value gt_int : int -> int -> bool

value prefix <= : int -> int -> bool

value le_int : int -> int -> bool

value prefix >= : int -> int -> bool

value ge_int : int -> int -> bool

Usual comparisons between integers.

value min : int -> int -> int

Return the smaller of the arguments.

value max : int -> int -> int

Return the greater of the arguments.

value abs : int -> int

Return the absolute value of the argument.

Bitwise operations

value prefix land : int -> int -> int

Bitwise logical and.

value prefix lor : int -> int -> int

Bitwise logical or.

value prefix lxor : int -> int -> int

Bitwise logical exclusive or.

value prefix lsl : int -> int -> int

value lshift_left : int -> int -> int
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n lsl m, or equivalently lshift_left n m, shifts n to the left by m bits.

value prefix lsr : int -> int -> int

n lsr m shifts n to the right by m bits. This is a logical shift: zeroes are inserted regardless
of sign.

value prefix asr : int -> int -> int

value lshift_right : int -> int -> int

n asr m, or equivalently lshift_right n m, shifts n to the right by m bits. This is an
arithmetic shift: the sign bit is replicated.

Conversion functions

value string_of_int : int -> string

Convert the given integer to its decimal representation.

value int_of_string : string -> int

Convert the given string to an integer, in decimal (by default) or in hexadecimal, octal, or
binary if the string begins with 0x, 0o or 0b. Raise Failure "int_of_string" if the given
string is not a valid representation of an integer.

21.10 io: Buffered input and output

type in_channel

type out_channel

The abstract types of input channels and output channels.

exception End_of_file

Raised when an operation cannot complete because the end of the file has been reached.

value stdin : in_channel

value std_in : in_channel

value stdout : out_channel

value std_out : out_channel

value stderr : out_channel

value std_err : out_channel

The standard input, standard output, and standard error output for the process. std_in,
std_out and std_err are respectively synonymous with stdin, stdout and stderr.

value exit : int -> ’a

Flush all pending writes on std_out and std_err, and terminate the process, returning the
given status code to the operating system (usually 0 to indicate no errors, and a small
positive integer to indicate failure.) This function should be called at the end of all
standalone programs that output results on std_out or std_err; otherwise, the program
may appear to produce no output, or its output may be truncated.
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Output functions on standard output

value print_char : char -> unit

Print the character on standard output.

value print_string : string -> unit

Print the string on standard output.

value print_int : int -> unit

Print the integer, in decimal, on standard output.

value print_float : float -> unit

Print the floating-point number, in decimal, on standard output.

value print_endline : string -> unit

Print the string, followed by a newline character, on standard output.

value print_newline : unit -> unit

Print a newline character on standard output, and flush standard output. This can be used
to simulate line buffering of standard output.

Output functions on standard error

value prerr_char : char -> unit

Print the character on standard error.

value prerr_string : string -> unit

Print the string on standard error.

value prerr_int : int -> unit

Print the integer, in decimal, on standard error.

value prerr_float : float -> unit

Print the floating-point number, in decimal, on standard error.

value prerr_endline : string -> unit

Print the string, followed by a newline character on standard error and flush standard error.
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Input functions on standard input

value read_line : unit -> string

Flush standard output, then read characters from standard input until a newline character
is encountered. Return the string of all characters read, without the newline character at
the end.

value read_int : unit -> int

Flush standard output, then read one line from standard input and convert it to an integer.
Raise Failure "int_of_string" if the line read is not a valid representation of an integer.

value read_float : unit -> float

Flush standard output, then read one line from standard input and convert it to a
floating-point number. The result is unspecified if the line read is not a valid representation
of a floating-point number.

General output functions

value open_out : string -> out_channel

Open the named file for writing, and return a new output channel on that file, positionned
at the beginning of the file. The file is truncated to zero length if it already exists. It is
created if it does not already exists. Raise sys__Sys_error if the file could not be opened.

value open_out_bin : string -> out_channel

Same as open_out, but the file is opened in binary mode, so that no translation takes place
during writes. On operating systems that do not distinguish between text mode and binary
mode, this function behaves like open_out.

value open_out_gen : sys__open_flag list -> int -> string -> out_channel

open_out_gen mode rights filename opens the file named filename for writing, as
above. The extra argument mode specify the opening mode (see sys__open). The extra
argument rights specifies the file permissions, in case the file must be created (see
sys__open). open_out and open_out_bin are special cases of this function.

value open_descriptor_out : int -> out_channel

open_descriptor_out fd returns a buffered output channel writing to the file descriptor
fd. The file descriptor fd must have been previously opened for writing, else the behavior is
undefined.

value flush : out_channel -> unit

Flush the buffer associated with the given output channel, performing all pending writes on
that channel. Interactive programs must be careful about flushing std_out at the right
times.
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value output_char : out_channel -> char -> unit

Write the character on the given output channel.

value output_string : out_channel -> string -> unit

Write the string on the given output channel.

value output : out_channel -> string -> int -> int -> unit

output chan buff ofs len writes len characters from string buff, starting at offset ofs,
to the output channel chan. Raise Invalid_argument "output" if ofs and len do not
designate a valid substring of buff.

value output_byte : out_channel -> int -> unit

Write one 8-bit integer (as the single character with that code) on the given output channel.
The given integer is taken modulo 256.

value output_binary_int : out_channel -> int -> unit

Write one integer in binary format on the given output channel. The only reliable way to
read it back is through the input_binary_int function. The format is compatible across all
machines for a given version of Caml Light.

value output_value : out_channel -> ’a -> unit

Write the representation of a structured value of any type (except functions) to a channel.
Circularities and sharing inside the value are detected and preserved. The object can be
read back, by the function input_value. The format is compatible across all machines for a
given version of Caml Light. Raise Invalid_argument "extern: functional value"

when encountering a function value.

value seek_out : out_channel -> int -> unit

seek_out chan pos sets the current writing position to pos for channel chan. This works
only for regular files. On files of other kinds (such as terminals, pipes, and sockets), the
behavior is unspecified.

value pos_out : out_channel -> int

Return the current writing position for the given channel.

value out_channel_length : out_channel -> int

Return the total length (number of characters) of the given channel.

value close_out : out_channel -> unit

Close the given channel, flushing all buffered write operations. The behavior is unspecified if
any of the above functions is called on a closed channel.
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General input functions

value open_in : string -> in_channel

Open the named file for reading, and return a new input channel on that file, positioned at
the beginning of the file. Raise sys__Sys_error if the file could not be opened.

value open_in_bin : string -> in_channel

Same as open_in, but the file is opened in binary mode, so that no translation takes place
during reads. On operating systems that do not distinguish between text mode and binary
mode, this function behaves like open_in.

value open_in_gen : sys__open_flag list -> int -> string -> in_channel

open_in_gen mode rights filename opens the file named filename for reading, as above.
The extra arguments mode and rights specify the opening mode and file permissions (see
sys__open). open_in and open_in_bin are special cases of this function.

value open_descriptor_in : int -> in_channel

open_descriptor_in fd returns a buffered input channel reading from the file descriptor
fd. The file descriptor fd must have been previously opened for reading, else the behavior is
undefined.

value input_char : in_channel -> char

Read one character from the given input channel. Raise End_of_file if there are no more
characters to read.

value input_line : in_channel -> string

Read characters from the given input channel, until a newline character is encountered.
Return the string of all characters read, without the newline character at the end. Raise
End_of_file if the end of the file is reached before the line is complete.

value input : in_channel -> string -> int -> int -> int

input chan buff ofs len attempts to read len characters from channel chan, storing
them in string buff, starting at character number ofs. It returns the actual number of
characters read, between 0 and len (inclusive). A return value of 0 means that the end of
file was reached. A return value between 0 and len exclusive means that no more characters
were available at that time; input must be called again to read the remaining characters, if
desired. Exception Invalid_argument "input" is raised if ofs and len do not designate a
valid substring of buff.

value really_input : in_channel -> string -> int -> int -> unit

input chan buff ofs len reads len characters from channel chan, storing them in string
buff, starting at character number ofs. Raise End_of_file if the end of file is reached
before len characters have been read. Raise Invalid_argument "really_input" if ofs
and len do not designate a valid substring of buff.
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value input_byte : in_channel -> int

Same as input_char, but return the 8-bit integer representing the character. Raise
End_of_file if an end of file was reached.

value input_binary_int : in_channel -> int

Read an integer encoded in binary format from the given input channel. See
output_binary_int. Raise End_of_file if an end of file was reached while reading the
integer.

value input_value : in_channel -> ’a

Read the representation of a structured value, as produced by output_value, and return
the corresponding value. This is not type-safe. The type of the returned object is not ’a
properly speaking: the returned object has one unique type, which cannot be determined at
compile-time. The programmer should explicitly give the expected type of the returned
value, using the following syntax: (input_value chan : type). The behavior is
unspecified if the object in the file does not belong to the given type.

value seek_in : in_channel -> int -> unit

seek_in chan pos sets the current reading position to pos for channel chan.

value pos_in : in_channel -> int

Return the current reading position for the given channel.

value in_channel_length : in_channel -> int

Return the total length (number of characters) of the given channel. This works only for
regular files. On files of other kinds, the result is meaningless.

value close_in : in_channel -> unit

Close the given channel. Anything can happen if any of the functions above is called on a
closed channel.

21.11 list: Operations on lists

value list_length : ’a list -> int

Return the length (number of elements) of the given list.

value prefix @ : ’a list -> ’a list -> ’a list

List concatenation.

value hd : ’a list -> ’a
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Return the first element of the given list. Raise Failure "hd" if the list is empty.

value tl : ’a list -> ’a list

Return the given list without its first element. Raise Failure "tl" if the list is empty.

value rev : ’a list -> ’a list

List reversal.

value map : (’a -> ’b) -> ’a list -> ’b list

map f [a1; ...; an] applies function f in turn to a1 ... an, and builds the list
[f a1; ...; f an] with the results returned by f.

value do_list : (’a -> ’b) -> ’a list -> unit

do_list f [a1; ...; an] applies function f in turn to a1 ... an, discarding all the
results. It is equivalent to begin f a1; f a2; ...; f an; () end.

value it_list : (’a -> ’b -> ’a) -> ’a -> ’b list -> ’a

it_list f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn.

value list_it : (’a -> ’b -> ’b) -> ’a list -> ’b -> ’b

list_it f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...)).

value map2 : (’a -> ’b -> ’c) -> ’a list -> ’b list -> ’c list

map2 f [a1; ...; an] [b1; ...; bn] is [f a1 b1; ...; f an bn]. Raise
Invalid_argument "map2" if the two lists have different lengths.

value do_list2 : (’a -> ’b -> ’c) -> ’a list -> ’b list -> unit

do_list2 f [a1; ...; an] [b1; ...; bn] calls in turn f a1 b1; ...; f an bn,
discarding the results. Raise Invalid_argument "do_list2" if the two lists have different
lengths.

value it_list2 : (’a -> ’b -> ’c -> ’a) -> ’a -> ’b list -> ’c list -> ’a

it_list2 f a [b1; ...; bn] [c1; ...; cn] is
f (... (f (f a b1 c1) b2 c2) ...) bn cn. Raise Invalid_argument "it_list2" if
the two lists have different lengths.

value list_it2 : (’a -> ’b -> ’c -> ’c) -> ’a list -> ’b list -> ’c -> ’c

list_it2 f [a1; ...; an] [b1; ...; bn] c is
f a1 b1 (f a2 b2 (... (f an bn c) ...)). Raise Invalid_argument "list_it2" if
the two lists have different lengths.

value flat_map : (’a -> ’b list) -> ’a list -> ’b list
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flat_map f [l1; ...; ln] is (f l1) @ (f l2) @ ... @ (f ln).

value for_all : (’a -> bool) -> ’a list -> bool

for_all p [a1; ...; an] is (p a1) & (p a2) & ... & (p an).

value exists : (’a -> bool) -> ’a list -> bool

exists p [a1; ...; an] is (p a1) or (p a2) or ... or (p an).

value mem : ’a -> ’a list -> bool

mem a l is true if and only if a is structurally equal (see module eq) to an element of l.

value memq : ’a -> ’a list -> bool

memq a l is true if and only if a is physically equal (see module eq) to an element of l.

value except : ’a -> ’a list -> ’a list

except a l returns the list l where the first element structurally equal to a has been
removed. The list l is returned unchanged if it does not contain a.

value exceptq : ’a -> ’a list -> ’a list

Same as except, with physical equality instead of structural equality.

value subtract : ’a list -> ’a list -> ’a list

subtract l1 l2 returns the list l1 where all elements structurally equal to one of the
elements of l2 have been removed.

value union : ’a list -> ’a list -> ’a list

union l1 l2 appends before list l2 all the elements of list l1 that are not structurally
equal to an element of l2.

value intersect : ’a list -> ’a list -> ’a list

intersect l1 l2 returns the list of the elements of l1 that are structurally equal to an
element of l2.

value index : ’a -> ’a list -> int

index a l returns the position of the first element of list l that is structurally equal to a.
The head of the list has position 0. Raise Not_found if a is not present in l.

value assoc : ’a -> (’a * ’b) list -> ’b

assoc a l returns the value associated with key a in the list of pairs l. That is,
assoc a [ ...; (a,b); ...] = b if (a,b) is the leftmost binding of a in list l. Raise
Not_found if there is no value associated with a in the list l.

value assq : ’a -> (’a * ’b) list -> ’b

Same as assoc, but use physical equality instead of structural equality to compare keys.

value mem_assoc : ’a -> (’a * ’b) list -> bool

Same as assoc, but simply return true if a binding exists, and false if no binding exists for
the given key.
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21.12 pair: Operations on pairs

value fst : ’a * ’b -> ’a

Return the first component of a pair.

value snd : ’a * ’b -> ’b

Return the second component of a pair.

value split : (’a * ’b) list -> ’a list * ’b list

Transform a list of pairs into a pair of lists: split [(a1,b1); ...; (an,bn)] is
([a1; ...; an], [b1; ...; bn])

value combine : ’a list * ’b list -> (’a * ’b) list

Transform a pair of lists into a list of pairs: combine ([a1; ...; an], [b1; ...; bn]) is
[(a1,b1); ...; (an,bn)]. Raise Invalid_argument "combine" if the two lists have
different lengths.

value map_combine : (’a * ’b -> ’c) -> ’a list * ’b list -> ’c list

map_combine f ([a1; ...; an], [b1; ...; bn]) is [f (a1, b1); ...; f (an, bn)].
Raise invalid_argument "map_combine" if the two lists have different lengths.

value do_list_combine : (’a * ’b -> ’c) -> ’a list * ’b list -> unit

do_list_combine f ([a1; ...; an], [b1; ...; bn]) calls in turn
f (a1, b1); ...; f (an, bn), discarding the results. Raise
Invalid_argument "do_list_combine" if the two lists have different lengths.

21.13 ref: Operations on references

type ’a ref = ref of mutable ’a

value prefix ! : ’a ref -> ’a

!r returns the current contents of reference r. Could be defined as fun (ref x) -> x.

value prefix := : ’a ref -> ’a -> unit

r := a stores the value of a in reference r.

value incr : int ref -> unit

Increment the integer contained in the given reference. Could be defined as
fun r -> r := succ !r.

value decr : int ref -> unit

Decrement the integer contained in the given reference. Could be defined as
fun r -> r := pred !r.
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21.14 stream: Operations on streams

type ’a stream

The type of streams whose elements have type ’a.

exception Parse_failure

Raised by parsers when none of the first component of the stream patterns matches.

exception Parse_error

Raised by parsers when the first component of a stream pattern matches, but one of the
following components does not match.

value stream_next : ’a stream -> ’a

stream_next s returns the first element of stream s, and removes it from the stream. Raise
Parse_failure if the stream is empty.

value stream_from : (unit -> ’a) -> ’a stream

stream_from f returns the stream which fetches its elements using the function f. This
function could be defined as:

let rec stream_from f = [< ’f(); stream_from f >]

but is implemented more efficiently.

value stream_of_string : string -> char stream

stream_of_string s returns the stream of the characters in string s.

value stream_of_channel : in_channel -> char stream

stream_of_channel ic returns the stream of characters read on channel ic.

value do_stream : (’a -> ’b) -> ’a stream -> unit

do_stream f s scans the whole stream s, applying the function f in turn to each element
encountered. The stream s is emptied.

value stream_check : (’a -> bool) -> ’a stream -> ’a

stream_check p returns the parser which returns the first element of the stream if the
predicate p returns true on this element, and raises Parse_failure otherwise.

value end_of_stream : ’a stream -> unit

Return () if the stream is empty, and raise Parse_failure otherwise.

value stream_get : ’a stream -> ’a * ’a stream

stream_get s return the first element of the stream s, and a stream containing the
remaining elements of s. Raise Parse_failure if the stream is empty. The stream s is not
modified. This function makes it possible to access a stream non-destructively.
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21.15 string: String operations

value string_length : string -> int

Return the length (number of characters) of the given string.

value nth_char : string -> int -> char

nth_char s n returns character number n in string s. The first character is character
number 0. The last character is character number string_length s - 1. Raise
Invalid_argument "nth_char" if n is ouside the range 0 – (string_length s - 1).

value set_nth_char : string -> int -> char -> unit

set_nth_char s n c modifies string s in place, replacing the character number n by c.
Raise Invalid_argument "set_nth_char" if n is ouside the range 0 to
(string_length s - 1).

value prefix ^ : string -> string -> string

s1 ^ s2 returns a new string containing the concatenation of the strings s1 and s2.

value sub_string : string -> int -> int -> string

sub_string s start len returns a new string of length len, containing the characters
number start to start + len - 1 of string s. Raise Invalid_argument "sub_string" if
start and len do not designate a valid substring of s; that is, if start < 0, or len < 0, or
start + len > string_length s.

value create_string : int -> string

create_string n returns a new string of length n. The string initially contains arbitrary
characters.

value make_string : int -> char -> string

make_string n c returns a new string of length n, filled with the character c.

value fill_string : string -> int -> int -> char -> unit

fill_string s start len c modifies string s in place, replacing the characters number
start to start + len - 1 by c. Raise Invalid_argument "fill_string" if start and
len do not designate a valid substring of s.

value blit_string : string -> int -> string -> int -> int -> unit

blit_string s1 o1 s2 o2 len copies len characters from string s1, starting at character
number o1, to string s2, starting at character number o2. It works correctly even if s1 and
s2 are the same string, and the source and destination chunks overlap. Raise
Invalid_argument "blit_string" if o1 and len do not designate a valid substring of s1,
or if o2 and len do not designate a valid substring of s2.



Chapter 21. The core library 205

value replace_string : string -> string -> int -> unit

replace_string dest src start copies all characters from the string src into the string
dst, starting at character number start in dst. Raise
Invalid_argument "replace_string" if copying would overflow string dest.

value eq_string : string -> string -> bool

value neq_string : string -> string -> bool

value le_string : string -> string -> bool

value lt_string : string -> string -> bool

value ge_string : string -> string -> bool

value gt_string : string -> string -> bool

Comparison functions (lexicographic ordering) between strings.

value compare_strings : string -> string -> int

General comparison between strings. compare_strings s1 s2 returns:

0 if s1 and s2 are equal,

-2 if s1 is a prefix of s2,

2 if s2 is a prefix of s1,

-1 otherwise if s1 is lexicographically before s2,

1 otherwise if s2 is lexicographically before s1.

value string_for_read : string -> string

Return a copy of the argument, with special characters represented by escape sequences,
following the lexical conventions of Caml Light.

21.16 vect: Operations on arrays

value vect_length : ’a vect -> int

Return the length (number of elements) of the given array.

value vect_item : ’a vect -> int -> ’a

vect_item v n returns the element number n of array v. The first element has number 0.
The last element has number vect_length v - 1. Raise Invalid_argument "vect_item"

if n is outside the range 0 to (vect_length v - 1). You can also write v.(n) instead of
vect_item v n.

value vect_assign : ’a vect -> int -> ’a -> unit

vect_assign v n x modifies array v in place, replacing element number n with x. Raise
Invalid_argument "vect_assign" if n is outside the range 0 – vect_length v - 1. You
can also write v.(n) <- x instead of vect_assign v n x.
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value make_vect : int -> ’a -> ’a vect

make_vect n x returns a fresh array of length n, initialized with x. All the elements of this
new array are initially physically equal to x, in the sense of the == operator.

value make_matrix : int -> int -> ’a -> ’a vect vect

make_matrix dimx dimy e returns a two-dimensional array (an array of arrays) with first
dimension dimx and second dimension dimy. All the elements of this new matrix are
initially physically equal to e, in the sense of the == operator. The element (x,y) of a
matrix m is accessed with the notation m.(x).(y).

value concat_vect : ’a vect -> ’a vect -> ’a vect

concat_vect v1 v2 returns a fresh array containing the concatenation of arrays v1 and v2.

value sub_vect : ’a vect -> int -> int -> ’a vect

sub_vect v start len returns a fresh array of length len, containing the elements number
start to start + len - 1 of array v. Raise Invalid_argument "sub_vect" if start and
len do not designate a valid subarray of v; that is, if start < 0, or len < 0, or
start + len > vect_length v.

value fill_vect : ’a vect -> int -> int -> ’a -> unit

fill_vect v ofs len x modifies array v in place, storing x in elements number ofs to
ofs + len - 1. Raise Invalid_argument "fill_vect" if ofs and len do not designate a
valid subarray of v.

value blit_vect : ’a vect -> int -> ’a vect -> int -> int -> unit

blit_vect v1 o1 v2 o2 len copies len elements from array v1, starting at element
number o1, to array v2, starting at element number o2. It works correctly even if v1 and v2

are the same array, and the source and destination chunks overlap. Raise
Invalid_argument "blit_vect" if o1 and len do not designate a valid subarray of v1, or
if o2 and len do not designate a valid subarray of v2.

value list_of_vect : ’a vect -> ’a list

list_of_vect v returns the list of all the elements of v, that is:
[v.(0); v.(1); ...; v.(vect_length v - 1)].

value vect_of_list : ’a list -> ’a vect

vect_of_list l returns a fresh array containing the elements of l.

value map_vect : (’a -> ’b) -> ’a vect -> ’b vect

map_vect f v applies function f to all the elements of v, and builds a array with the results
returned by f: [| f v.(0); f v.(1); ...; f v.(vect_length v - 1) |].
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value map_vect_list : (’a -> ’b) -> ’a vect -> ’b list

map_vect_list f v applies function f to all the elements of v, and builds a list with the
results returned by f: [ f v.(0); f v.(1); ...; f v.(vect_length v - 1) ].

value do_vect : (’a -> ’b) -> ’a vect -> unit

do_vect f v applies function f in turn to all the elements of v, discarding all the results:
f v.(0); f v.(1); ...; f v.(vect_length v - 1); ().
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Chapter 22

The standard library

This chapter describes the functions provided by the Caml Light standard library. Just as the
modules from the core library, the modules from the standard library are automatically linked with
the user’s object code files by the camlc command. Hence, the globals defined by these libraries
can be used in standalone programs without having to add any .zo file on the command line for the
linking phase. Similarly, in interactive use, these globals can be used in toplevel phrases without
having to load any .zo file in memory.

Unlike the modules from the core library, the modules from the standard library are not auto-
matically “opened” when a compilation starts, or when the toplevel system is launched. Hence it
is necessary to use qualified identifiers to refer to the functions provided by these modules, or to
add #open directives.

Conventions

For easy reference, the modules are listed below in alphabetical order of module names. For each
module, the declarations from its interface file are printed one by one in typewriter font, followed
by a short comment. All modules and the identifiers they export are indexed at the end of this
report.

22.1 arg: Parsing of command line arguments

This module provides a general mechanism for extracting options and arguments from the
command line to the program.

Syntax of command lines

A keyword is a character string starting with a -. An option is a keyword alone or followed
by an argument. There are 4 types of keywords: Unit, String, Int, and Float. Unit keywords
do not take an argument. String, Int, and Float keywords take the following word on the
command line as an argument. Arguments not preceded by a keyword are called anonymous
arguments. Examples: (foo is assumed to be the command name)

foo -flag (a unit option)

209
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foo -int 1 (an int option with argument 1)

foo -string foobar (a string option with argument "foobar")

foo -float 12.34 (a float option with argument 12.34)

foo 1 2 3 (three anonymous arguments: "1", "2", and "3")

foo 1 -flag 3 -string bar (one anonymous argument, a unit option, one anonymous

argument, a string option with argument "bar")

type spec =

String of (string -> unit)

| Int of (int -> unit)

| Unit of (unit -> unit)

| Float of (float -> unit)

The concrete type describing the behavior associated with a keyword.

value parse : (string * spec) list -> (string -> unit) -> unit

parse speclist anonfun parses the command line, calling the functions in speclist

whenever appropriate, and anonfun on anonymous arguments. The functions are called in
the same order as they appear on the command line. The strings in the
(string * spec) list are keywords and must start with a -, or else they are ignored. For
the user to be able to specify anonymous arguments starting with a -, include for example
("--", String anonfun) in speclist.

exception Bad of string

Functions in speclist or anonfun can raise Bad message to reject invalid arguments.

22.2 filename: Operations on file names

value current_dir_name : string

The conventional name of the current directory (e.g. “.” in Unix).

value concat : string -> string -> string

concat dir file returns a file name that designates file file in directory dir.

value is_absolute : string -> bool

Return true if the file name is absolute or starts with an explicit reference to the current
directory (./ or ../ in Unix), and false otherwise.

value check_suffix : string -> string -> bool

check_suffix name suff returns true if the filename name ends with the suffix suff.
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value chop_suffix : string -> string -> string

chop_suffix name suff removes the suffix suff from the filename name. The behavior is
undefined if name does not end with the suffix suff.

value basename : string -> string

value dirname : string -> string

Split a file name into directory name and base file name, respectively.
concat (dirname name) (basename name) returns a file name which is equivalent to name.
Moreover, after setting the current directory to dirname name (with sys__chdir),
references to basename name (which is a relative file name) designate the same file as name
before the call to chdir.

22.3 hashtbl: Hash tables and hash functions

Hash tables are hashed association tables, with in-place modification.

type (’a, ’b) t mutable

The type of association tables from type ’a to type ’b.

value new : int -> (’a,’b) t

new n creates a new, empty hash table, with initial size n. The table grows as needed, so n

is just an initial guess. Apparently produces better results when n is a prime number.

value clear : (’a, ’b) t -> unit

Empty a hash table.

value add : (’a, ’b) t -> ’a -> ’b -> unit

add tbl x y binds the value y to key x in table tbl. Previous bindings for x are not
removed, but simply hidden. That is, after performing remove tbl x, the previous binding
for x, if any, is restored. (This is the semantics of association lists.)

value find : (’a, ’b) t -> ’a -> ’b

find tbl x returns the current binding of x in tbl, or raises Not_found if no such binding
exists.

value find_all : (’a, ’b) t -> ’a -> ’b list

find_all tbl x returns the list of all data associated with x in tbl. The current binding is
returned first, then the previous bindings, in reverse order of introduction in the table.

value remove : (’a, ’b) t -> ’a -> unit

remove tbl x removes the current binding of x in tbl, restoring the previous binding if it
exists. It does nothing if x is not bound in tbl.
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value do_table : (’a -> ’b -> ’c) -> (’a, ’b) t -> unit

do_table f tbl applies f to all bindings in table tbl, discarding all the results. f receives
the key as first argument, and the associated value as second argument. The order in which
the bindings are passed to f is unpredictable. The same binding can be presented several
times to f.

The polymorphic hash primitive

value hash : ’a -> int

hash x associates a positive integer to any value of any type. It is guaranteed that if x = y,
then hash x = hash y. Moreover, hash always terminates, even on cyclic structures.

value hash_param : int -> int -> ’a -> int

hash_param n m x computes a hash value for x, with the same properties as for hash. The
two extra parameters n and m give more precise control over hashing. Hashing performs a
depth-first, right-to-left traversal of the structure x, stopping after n meaningful nodes were
encountered, or m nodes, meaningful or not, were encountered. Meaningful nodes are:
integers; floating-point numbers; strings; characters; booleans; and constant constructors.
Larger values for m and n mean that more nodes are taken into account to compute the final
hash value, and therefore collisions are less likely to happen. However, hashing takes longer.
Parameters m and n allow to trade accuracy for speed.

22.4 lexing: The run-time library for lexers generated by

camllex

Lexer buffers

type lexbuf =

{ refill_buff : lexbuf -> unit;

lex_buffer : string;

mutable lex_abs_pos : int;

mutable lex_start_pos : int;

mutable lex_curr_pos : int;

mutable lex_last_pos : int;

mutable lex_last_action : lexbuf -> obj }

The type of lexer buffers. A lexer buffer is the argument passed to the scanning functions
defined by the generated scanners. The lexer buffer holds the current state of the scanner,
plus a function to refill the buffer from the input.

value create_lexer_channel : in_channel -> lexbuf

Create a lexer buffer on the given input channel. create_lexer_channel inchan returns a
lexer buffer that reads from the input channel inchan, at the current reading position.
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value create_lexer_string : string -> lexbuf

Create a lexer buffer that reads from the given string. Reading starts from the first character
in the string. An end-of-input condition is generated when the end of the string is reached.

value create_lexer : (string -> int -> int) -> lexbuf

Create a lexer buffer with the given three parameter function as its reading method. When
the scanner needs more characters, it will call the given function, giving it a character string
s and a character count n. The function should put n characters or less in s, starting at
character number 0, and return the number of characters provided. A return value of 0
means end of input.

Functions for lexer semantic actions

The following functions can be called from the semantic actions of lexer definitions (the ML
code enclosed in braces that computes the value returned by lexing functions). They give
access to the character string matched by the regular expression associated with the
semantic action. These functions must be applied to the argument lexbuf, which, in the
code generated by camllex, is bound to the lexer buffer passed to the parsing function.

value get_lexeme : lexbuf -> string

get_lexeme lexbuf returns the string matched by the regular expression.

value get_lexeme_char : lexbuf -> int -> char

get_lexeme_char lexbuf i returns character number i in the matched string.

value get_lexeme_start : lexbuf -> int

get_lexeme_start lexbuf returns the position in the input buffer of the first character of
the matched string. The first character read has position 0.

value get_lexeme_end : lexbuf -> int

get_lexeme_start lexbuf returns the position in the input buffer of the character
following the last character of the matched string. The first character read has position 0.

22.5 parsing: The run-time library for parsers generated by

mlyacc

value symbol_start : unit -> int

value symbol_end : unit -> int

symbol_start and symbol_end are to be called in the action part of a grammar rule only.
They return the position of the string that matches the left-hand side of the rule:
symbol_start() returns the position of the first character; symbol_end() returns the
position of the last character, plus one. The first character read has position 0.
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value clear_parser : unit -> unit

Empty the parser stack. Call it just after a parsing function has returned, to remove all
pointers from the parser stack to structures that were built by semantic actions during
parsing. This is optional, but lowers the memory requirements of the programs.

22.6 printexc: A catch-all exception handler

value f: (’a -> ’b) -> ’a -> ’b

f fn x applies fn to x and returns the result. If the evaluation of fn x raises any
exception, the name of the exception is printed on standard error output, and the programs
aborts with exit code 2. Typical use is f main (), where main, with type unit->unit, is
the entry point of a standalone program. This catches and prints stray exceptions. For this
functional to work properly, the program must be linked with the -g option.

22.7 printf: Formatting printing functions

value fprintf: out_channel -> string -> ’a

fprintf outchan format arg1 ... argN formats the arguments arg1 to argN according
to the format string format, and outputs the resulting string on the channel outchan. The
format is a character string which contains two types of objects: plain characters, which are
simply copied to the output channel, and conversion specifications, each of which causes the
conversion and printing of one argument. Conversion specifications consist of the %
character, followed by optional flags and field widths, followed by one conversion character.
The conversion characters and their meanings are:

d or i: convert an integer argument to signed decimal.

u: convert an integer argument to unsigned decimal.

x: convert an integer argument to unsigned hexadecimal, using lowercase letters.

X: convert an integer argument to unsigned hexadecimal, using uppercase letters.

s: insert a string argument.

c: insert a character argument.

f: convert a floating-point argument to decimal notation, in the style dddd.ddd.

e or E: convert a floating-point argument to decimal notation, in the style d.ddd e+-dd

(mantissa and exponent).

g or G: convert a floating-point argument to decimal notation, in style f or e, E (whichever
is more compact).

b: convert a boolean argument to the string true or false.

Refer to the C library printf function for the meaning of flags and field width specifiers.
The exception Invalid_argument is raised if the types of the provided arguments do not
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match the format. The exception is also raised if too many arguments are provided. If too
few arguments are provided, printing stops just before converting the first missing
argument. This function is not type-safe, since it returns an object with type ’a, that can
be abused in many ways. It is recommended to always use fprintf inside a sequence, as in
fprintf "%d" n; ().

value printf: string -> ’a

Same as fprintf, but output on std_out.

value fprint: out_channel -> string -> unit

Print the given string on the given output channel, without any formatting. This is the
same function as output_string from module io.

value print: string -> unit

Print the given string on std_out, without any formatting. This is the same function as
print_string from module io.

22.8 queue: First-in, first-out queues

This module implements queues (FIFOs), with in-place modification.

type ’a t mutable

The type of queues containing elements of type ’a.

exception Empty

Raised when take is applied to an empty queue.

value new: unit -> ’a t

Return a new queue, initially empty.

value add: ’a -> ’a t -> unit

add x q adds the element x at the end of the queue q.

value take: ’a t -> ’a

take q removes and returns the first element in queue q, or raises Empty if the queue is
empty.

value peek: ’a t -> ’a

peek q returns the first element in queue q, without removing it from the queue, or raises
Empty if the queue is empty.

value clear : ’a t -> unit
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Discard all elements from a queue.

value length: ’a t -> int

Return the number of elements in a queue.

value iter: (’a -> ’b) -> ’a t -> unit

iter f q applies f in turn to all elements of q, from the least recently entered to the most
recently entered. The queue itself is unchanged.

22.9 random: Pseudo-random number generator

value init : int -> unit

Initialize the generator, using the argument as a seed. The same seed will always yield the
same sequence of numbers.

value int : int -> int

random__int bound returns a random number between 0 (inclusive) and bound (exclusive).
bound must be smaller than 230.

value float : float -> float

random__float returns a random number between 0 (inclusive) and bound (exclusive).

22.10 sort: Sorting and merging lists

value sort : (’a -> ’a -> bool) -> ’a list -> ’a list

Sort a list in increasing order according to an ordering predicate. The predicate should
return true if its first argument is less than or equal to its second argument.

value merge : (’a -> ’a -> bool) -> ’a list -> ’a list -> ’a list

Merge two lists according to the given predicate. Assuming the two argument lists are
sorted according to the predicate, merge returns a sorted list containing the elements from
the two lists. The behavior is undefined if the two argument lists were not sorted.

22.11 stack: Last-in, first-out stacks

This module implements stacks (LIFOs), with in-place modification.

type ’a t mutable

The type of stacks containing elements of type ’a.

exception Empty
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Raised when pop is applied to an empty stack.

value new: unit -> ’a t

Return a new stack, initially empty.

value push: ’a -> ’a t -> unit

push x s adds the element x at the top of stack s.

value pop: ’a t -> ’a

pop s removes and returns the topmost element in stack s, or raises Empty if the stack is
empty.

value clear : ’a t -> unit

Discard all elements from a stack.

value length: ’a t -> int

Return the number of elements in a stack.

value iter: (’a -> ’b) -> ’a t -> unit

iter f s applies f in turn to all elements of s, from the element at the top of the stack to
the element at the bottom of the stack. The stack itself is unchanged.

22.12 sys: System interface

This module provides a simple interface to the operating system.

exception Sys_error of string

Raised by some functions in the sys and io modules, when the underlying system calls fail.
The argument to Sys_error is a string describing the error. The texts of the error messages
are implementation-dependent, and should not be relied upon to catch specific system
errors.

value command_line : string vect

The command line arguments given to the process. The first element is the command name
used to invoke the program.

type file_perm == int

value s_irusr : file_perm

value s_iwusr : file_perm

value s_ixusr : file_perm

value s_irgrp : file_perm

value s_iwgrp : file_perm
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value s_ixgrp : file_perm

value s_iroth : file_perm

value s_iwoth : file_perm

value s_ixoth : file_perm

value s_isuid : file_perm

value s_isgid : file_perm

value s_irall : file_perm

value s_iwall : file_perm

value s_ixall : file_perm

Access permissions for files. r is reading permission, w is writing permission, x is execution
permission. usr means permissions for the user owning the file, grp for the group owning the
file, oth for others. isuid and isgid are for set-user-id and set-group-id files, respectively.

type open_flag =

O_RDONLY (* open read-only *)

| O_WRONLY (* open write-only *)

| O_RDWR (* open for reading and writing *)

| O_APPEND (* open for appending *)

| O_CREAT (* create the file if nonexistent *)

| O_TRUNC (* truncate the file to 0 if it exists *)

| O_EXCL (* fails if the file exists *)

| O_BINARY (* open in binary mode *)

| O_TEXT (* open in text mode *)

The commands for open.

value exit : int -> ’a

Terminate the program and return the given status code to the operating system. In
contrast with the function exit from module io, this exit function does not flush the
standard output and standard error channels.

value open : string -> open_flag list -> file_perm -> int

Open a file. The second argument is the opening mode. The third argument is the
permissions to use if the file must be created. The result is a file descriptor opened on the
file.

value close : int -> unit

Close a file descriptor.

value remove : string -> unit

Remove the given file name from the file system.

value rename : string -> string -> unit
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Rename a file. The first argument is the old name and the second is the new name.

value getenv : string -> string

Return the value associated to a variable in the process environment. Raise Not_found if
the variable is unbound.

value chdir : string -> unit

Change the current working directory of the process. Note that there is no easy way of
getting the current working directory from the operating system.

exception Break

Exception Break is raised on user interrupt if catch_break is on.

value catch_break : bool -> unit

catch_break governs whether user interrupt terminates the program or raises the Break
exception. Call catch_break true to enable raising Break, and catch_break false to let
the system terminate the program on user interrupt.
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Chapter 23

The graphics library

This chapter describes the portable graphics primitives that come standard in the implementation
of Caml Light on micro-computers.

Unix: On Unix workstations running the X windows system, these graphics primitives have been
implemented on top of the RT toolkit. See the directory contrib/libgraph in the distribution
for information on how to link with the RT toolkit and the library implementing the graphics
primitives. Drawing takes place in a separate X window, that is created when open_graph is
called.

Mac: The graphics primitive are available from the standalone application that runs the toplevel
system. They are not available from programs compiled by camlc and run under the MPW
shell. Drawing takes place in a separate window, that can be made visible with the “Show
graphics window” menu entry.

PC: The graphics primitive are available both at toplevel and in separately compiled programs.
The open_graph primitive switches the whole screen to graphics mode. Under the toplevel
system, the user’s phrases and the system responses are printed on the graphics screen too,
possibly overwriting parts of the drawings, and causing scrolling when the bottom of the
screen is reached.

The screen coordinates are interpreted as shown in the figure below. Notice that the coordinate
system used is the same as in mathematics: y increases from the bottom of the screen to the top
of the screen, and angles are measured counterclockwise (in degrees). Drawing is clipped to the
screen.

✲ x

✻

y

Screen

size_x()

size_y()

pixel at (x, y)

x

y
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Here are the graphics mode specifications supported by open_graph on the various implementations
of this library.

Unix: The argument to open_graph has the format "display-name geometry", where display-name
is the name of the X-windows display to connect to, and geometry is a standard X-windows
geometry specification. The two components are separated by a space. Either can be omitted,
or both. Examples:

open_graph "foo:0"

connects to the display foo:0 and creates a window with the default geometry

open_graph "foo:0 300x100+50-0"

connects to the display foo:0 and creates a window 300 pixels wide by 100 pixels tall,
at location (50, 0)

open_graph " 300x100+50-0"

connects to the default display and creates a window 300 pixels wide by 100 pixels tall,
at location (50, 0)

open_graph ""

connects to the default display and creates a window with the default geometry.

Mac: The argument to open_graph is ignored.

PC86: The 86 PC version supports the CGA, EGA and VGA graphics cards. The argument to
open_graph is interpreted as follows:

Argument to open_graph Graphic mode

"cga" 320x200, 4 colors
"ega_low" 640x200, 16 colors
"ega_high" 640x350, 16 colors
"vga_low" 640x200, 16 colors
"vga_med" 640x350, 16 colors
"vga_high" 640x480, 16 colors
anything else highest possible resolution

PC386: The 386 PC version supports VGA graphics cards, and a number of SuperVGA cards, pro-
vided the correct driver has been installed. (See the installation instructions.) Only 256
color modes are supported. This means a resolution of 320x200 on standard VGA, and from
640x480 to 1024x768 on SuperVGA. The argument to open_graph is interpreted as follows:

Argument to open_graph Graphic mode

"highest" highest possible resolution
"noninterlaced" highest possible resolution, non-interlaced mode

"320x200" standard 320x200 VGA mode
"wxh" at least w by h pixels, if possible

anything else default resolution, as set in the GO32 variable
(see the installation instructions).
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23.1 graphics: Machine-independent graphics primitives

exception Graphic_failure of string

Raised by the functions below when they encounter an error.

Initializations

value open_graph: string -> unit

Show the graphics window or switch the screen to graphic mode. The graphics window is
cleared. The string argument is used to pass optional information on the desired graphics
mode, the graphics window size, and so on. Its interpretation is implementation-dependent.
If the empty string is given, a sensible default is selected.

value close_graph: unit -> unit

Delete the graphics window or switch the screen back to text mode.

value clear_graph : unit -> unit

Erase the graphics window.

value size_x : unit -> int

value size_y : unit -> int

Return the size of the graphics window. Coordinates of the screen pixels range over
0 .. size_x()-1 and 0 .. size_y()-1. Drawings outside of this rectangle are clipped,
without causing an error. The origin (0,0) is at the lower left corner.

Colors

type color == int

A color is specified by its R, G, B components. Each component is in the range 0..255.
The three components are packed in an int: 0xRRGGBB, where RR are the two hexadecimal
digits for the red component, GG for the green component, BB for the blue component.

value rgb: int -> int -> int -> int

rgb r g b returns the integer encoding the color with red component r, green component
g, and blue component b. r, g and b are in the range 0..255.

value black : color

value white : color

value red : color

value green : color

value blue : color

value yellow : color

value cyan : color

value magenta : color
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Some predefined colors.

value set_color : color -> unit

Set the current drawing color.

Point and line drawing

value plot : int -> int -> unit

Plot the given point with the current drawing color.

value point_color : int -> int -> color

Return the color of the given point.

value moveto : int -> int -> unit

Position the current point.

value current_point : unit -> int * int

Return the position of the current point.

value lineto : int -> int -> unit

Draw a line with endpoints the current point and the given point, and move the current
point to the given point.

value draw_arc : int -> int -> int -> int -> int -> int -> unit

draw_arc x y rx ry a1 a2 draws an elliptical arc with center x,y, horizontal radius rx,
vertical radius ry, from angle a1 to angle a2 (in degrees). The current point is unchanged.

value draw_ellipse : int -> int -> int -> int -> unit

draw_ellipse x y rx ry draws an ellipse with center x,y, horizontal radius rx and
vertical radius ry. The current point is unchanged.

value draw_circle : int -> int -> int -> unit

draw_circle x y r draws a circle with center x,y and radius r. The current point is
unchanged.

value set_line_width : int -> unit

Set the width of points and lines drawn with the functions above.
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Text drawing

value draw_char : char -> unit

value draw_string : string -> unit

Draw a character or a character string with lower left corner at current position. After
drawing, the current position is set to the lower right corner of the text drawn.

value set_font : string -> unit

value set_text_size : int -> unit

Set the font and character size used for drawing text. The interpretation of the arguments
to set_font and set_text_size is implementation-dependent.

value text_size : string -> int * int

Return the dimensions of the given text, if it were drawn with the current font and size.

Filling

value fill_rect : int -> int -> int -> int -> unit

fill_rect x y w h fills the rectangle with lower left corner at x,y, width w and heigth h,
with the current color.

value fill_poly : (int * int) vect -> unit

Fill the given polygon with the current color. The array contains the coordinates of the
vertices of the polygon.

value fill_arc : int -> int -> int -> int -> int -> int -> unit

Fill an elliptical pie slice with the current color. The parameters are the same as for
draw_arc.

value fill_ellipse : int -> int -> int -> int -> unit

Fill an ellipse with the current color. The parameters are the same as for draw_ellipse.

value fill_circle : int -> int -> int -> unit

Fill a circle with the current color. The parameters are the same as for draw_circle.
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Images

type image

The abstract type for images, in internal representation. Externally, images are represented
as matrices of colors.

value transp : color

In matrices of colors, this color represent a “transparent” point: when drawing the
corresponding image, all pixels on the screen corresponding to a transparent pixel in the
image will not be modified, while other points will be set to the color of the corresponding
point in the image. This allows superimposing an image over an existing background.

value make_image : color vect vect -> image

Convert the given color matrix to an image. Each sub-array represents one horizontal line.
All sub-arrays must have the same length; otherwise, exception Graphic_failure is raised.

value dump_image : image -> color vect vect

Convert an image to a color matrix.

value draw_image : image -> int -> int -> unit

Draw the given image with lower left corner at the given point.

value get_image : int -> int -> int -> int -> image

Capture the contents of a rectangle on the screen as an image. The parameters are the same
as for fill_rect.

value create_image : int -> int -> image

create_image w h returns a new image w pixels wide and h pixels tall, to be used in
conjunction with blit_image. The initial image contents are random.

value blit_image : image -> int -> int -> unit

blit_image img x y copies screen pixels into the image img, modifying img in-place. The
pixels copied are those inside the rectangle with lower left corner at x,y, and width and
height equal to those of the image.

Mouse and keyboard events

type status =

{ mouse_x : int; (* X coordinate of the mouse *)

mouse_y : int; (* Y coordinate of the mouse *)

button : bool; (* true if a mouse button is pressed *)

keypressed : bool; (* true if a key has been pressed *)

key : char } (* the character for the key pressed *)
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To report events.

type event =

Button_down (* A mouse button is pressed *)

| Button_up (* A mouse button is released *)

| Key_pressed (* A key is pressed *)

| Mouse_motion (* The mouse is moved *)

| Poll (* Don’t wait; return immediately *)

To specify events to wait for.

value wait_next_event : event list -> status

Wait until one of the events specified in the given event list occurs, and return the status of
the mouse and keyboard at that time. If Poll is given in the event list, return immediately
with the current status. If the mouse cursor is outside of the graphics window, the mouse_x
and mouse_y fields of the event are outside the range 0..size_x()-1, 0..size_y()-1.
Keypresses are queued, and dequeued one by one when the Key_pressed event is specified.

Mouse and keyboard polling

value mouse_pos : unit -> int * int

Return the position of the mouse cursor, relative to the graphics window. If the mouse
cursor is outside of the graphics window, mouse_pos() returns a point outside of the range
0..size_x()-1, 0..size_y()-1.

value button_down : unit -> bool

Return true if the mouse button is pressed, false otherwise.

value read_key : unit -> char

Wait for a key to be pressed, and return the corresponding character. Keypresses are
queued.

value key_pressed : unit -> bool

Return true if a keypress is available; that is, if read_key would not block.

Sound

value sound : int -> int -> unit

sound freq dur plays a sound at frequency freq (in hertz) for a duration dur (in
milliseconds). On the Macintosh, for obscure technical reasons, the frequency is rounded to
the nearest note in the equal-tempered scale.
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Chapter 24

Language extensions

This chapter describes the language features that are implemented in Caml Light, but not described
in the Caml Light reference manual. In contrast with the fairly stable kernel language that is
described in the reference manual, the extensions presented here are still experimental, and may
be removed or changed in the future.

24.1 Streams, parsers, and printers

Caml Light comprises a built-in type for streams (possibly infinite sequences of elements, that are
evaluated on demand), and associated stream expressions, to build streams, and stream patterns,
to destructure streams. Streams and stream patterns provide a natural approach to the writing of
recursive-descent parsers.

Streams are presented by the following extensions to the syntactic classes of expressions:

expr ::= . . .

| [< >]

| [< stream-component {; stream-component} >]
| function stream-pattern -> expr {| stream-pattern -> expr}
| match expr with stream-pattern -> expr {| stream-pattern -> expr}

stream-component ::= ’ expr
| expr

stream-pattern ::= [< >]

| [< stream-comp-pat {; stream-comp-pat} >]

stream-comp-pat ::= ’ pattern
| expr pattern
| ident

Stream expressions are bracketed by [< and >]. They represent the concatenation of their
components. The component ’ expr represents the one-element stream whose element is the value
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of expr. The component expr represents a sub-stream. For instance, if both s and t are streams
of integers, then [<’1; s; t; ’2>] is a stream of integers containing the element 1, then the
elements of s, then those of t, and finally 2. The empty stream is denoted by [< >].

Unlike any other kind of expressions in the language, stream expressions are submitted to lazy
evaluation: the components are not evaluated when the stream is built, but only when they are
accessed during stream matching. The components are evaluated once, the first time they are
accessed; the following accesses reuse the value computed the first time.

Stream patterns, also bracketed by [< and >], describe initial segments of streams. In particular,
the stream pattern [< >]matches all streams. Stream pattern components are matched against the
corresponding elements of a stream. The component ’ pattern matches the corresponding stream
element against the pattern. The component expr pattern applies the function denoted by expr to
the current stream, then matches the result of the function against pattern. Finally, the component
ident simply binds the identifier to the stream being matched. (The current implementation limits
ident to appear last in a stream pattern.)

Stream matching proceeds destructively: once a component has been matched, it is discarded
from the stream (by in-place modification).

Stream matching proceeds in two steps: first, a pattern is selected by matching the stream
against the first components of the stream patterns; then, the following components of the selected
pattern are checked against the stream. If the following components do not match, the exception
Parse_error is raised. There is no backtracking here: stream matching commits to the pattern
selected according to the first element. If none of the first components of the stream patterns match,
the exception Parse_failure is raised. The Parse_failure exception causes the next alternative
to be tried, if it occurs during the matching of the first element of a stream, before matching has
committed to one pattern.

See chapter 11 in part II for a more gentle introductions to streams, and for some examples of
their use in writing parsers. A more formal presentation of streams, and a discussion of alternate
semantics, can be found in Parsers in ML by Michel Mauny and Daniel de Rauglaudre, in the
proceedings of the 1992 ACM conference on Lisp and Functional Programming.

24.2 Range patterns

In patterns, Caml Light recognizes the form ‘ c ‘ .. ‘ d ‘ (two character constants separated
by ..) as a shorthand for the pattern

‘ c ‘ | ‘ c1 ‘ | ‘ c2 ‘ | . . . | ‘ cn ‘ | ‘ d ‘

where c1, c2, . . . , cn are the characters that occur between c and d in the ASCII character set. For
instance, the pattern ‘0‘..‘9‘ matches all characters that are digits.

24.3 Recursive definitions of values

Besides let rec definitions of functional values, as described in the reference manual, Caml Light
supports a certain class of recursive definitions of non-functional values. For instance, the following
definition is accepted:

let rec x = 1 :: y and y = 2 :: x;;
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and correctly binds x to the cyclic list 1 :: 2 :: 1 :: 2 :: . . ., and y to the cyclic list 2 :: 1 :: 2 :: 1 :: . . .
Informally, the class of accepted definitions consists of those definitions where the defined variables
occur only inside function bodies or as a field of a data structure. Moreover, the patterns in the
left-hand sides must be identifiers, nothing more complex.

24.4 Mutable variant types

The argument of a value constructor can be declared “mutable” when the variant type is defined:

type foo = A of mutable int

| B of mutable int * int

| ...

This allows in-place modification of the argument part of a constructed value. Modification is
performed by a new kind of expressions, written ident <- expr, where ident is an identifier bound
by pattern-matching to the argument of a mutable constructor, and expr denotes the value that
must be stored in place of that argument. Continuing the example above:

let x = A 1 in

begin match x with A y -> y <- 2 | _ -> () end;

x

returns the value A 2. The notation ident <- expr works also if ident is an identifier bound by
pattern-matching to the value of a mutable field in a record. For instance,

type bar = {mutable lbl : int};;

let x = {lbl = 1} in

begin match x with {lbl = y} -> y <- 2 end;

x

returns the value {lbl = 2}.

24.5 Directives

In addition to the standard #open and #close directives, Caml Light provides three additional
directives.

#infix " id "

Change the lexical status of the identifier id: in the remainder of the compilation unit, id is
recognized as an infix operator, just like +. The notation prefix id can be used to refer to
the identifier id itself. Expressions of the form expr1 id expr2 are parsed as the application
prefix id expr1 expr2. The argument to the #infix directive must be an identifier, that
is, a sequence of letters, digits and underscores starting with a letter; otherwise, the #infix

declaration has no effect. Example:

#infix "union";;

let prefix union = fun x y -> ... ;;

[1,2] union [3,4];;
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#uninfix " id "

Remove the infix status attached to the identifier id by a previous #infix " id " directive.

#directory " dir-name "
Add the named directory to the path of directories searched for compiled module interface
files. This is equivalent to the -I command-line option to the batch compiler and the toplevel
system.



Part VI

The Caml Light commands

235





Chapter 25

Batch compilation (camlc)

This chapter describes how Caml Light programs can be compiled non-interactively, and turned
into standalone executable files. This is achieved by the command camlc, which compiles and links
Caml Light source files.

Mac: This command is not a standalone Macintosh application. To run camlc, you need the Mac-
intosh Programmer’s Workshop (MPW) programming environment. The programs generated
by camlc are also MPW tools, not standalone Macintosh applications.

25.1 Overview of the compiler

The camlc command has a command-line interface similar to the one of most C compilers. It
accepts several types of arguments: source files for module implementations; source files for module
interfaces; and compiled module implementations.

• Arguments ending in .mli are taken to be source files for module interfaces. Module interfaces
declare exported global identifiers, define public data types, and so on. From the file x.mli,
the camlc compiler produces a compiled interface in the file x.zi.

• Arguments ending in .ml are taken to be source files for module implementation. Mod-
ule implementations bind global identifiers to values, define private data types, and contain
expressions to be evaluated for their side-effects. From the file x.ml, the camlc compiler
produces compiled object code in the file x.zo. If the interface file x.mli exists, the module
implementation x.ml is checked against the corresponding compiled interface x.zi, which
is assumed to exist. If no interface x.mli is provided, the compilation of x.ml produces a
compiled interface file x.zi in addition to the compiled object code file x.zo. The produced
file x.zi produced corresponds to an interface that exports everything that is defined in the
implementation x.ml.

• Arguments ending in .zo are taken to be compiled object code. These files are linked together,
along with the object code files obtained by compiling .ml arguments (if any), and the Caml
Light standard library, to produce a standalone executable program. The order in which
.zo and .ml arguments are presented on the command line is relevant: global identifiers are
initialized in that order at run-time, and it is a link-time error to use a global identifier before
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having initialized it. Hence, a given x.zo file must come before all .zo files that refer to
identifiers defined in the file x.zo.

The output of the linking phase is a file containing compiled code that can be executed by the
Caml Light runtime system: the command named camlrun. If caml.out is the name of the file
produced by the linking phase, the command

camlrun caml.out arg1 arg2 . . . argn

executes the compiled code contained in caml.out, passing it as arguments the character strings
arg1 to argn. (See the chapter on camlrun for more details.)

Unix: On most Unix systems, the file produced by the linking phase can be run directly, as in:

./caml.out arg1 arg2 . . . argn

The produced file has the executable bit set, and it manages to launch the bytecode interpreter
by itself.

PC: The output file produced by the linking phase is directly executable, provided it is given
extension .EXE. Hence, if the output file is named caml_out.exe, you can execute it with the
command

caml_out arg1 arg2 . . . argn

Actually, the produced file caml_out.exe is a tiny executable file prepended to the bytecode
file. The executable simply runs the camlrun runtime system on the remainder of the file.
(As a consequence, this is not a standalone executable: it still requires camlrun.exe to reside
in one of the directories in the path.)

25.2 Options

The following command-line options are recognized by camlc.

-c Compile only. Suppress the linking phase of the compilation. Source code files are turned into
compiled files, but no executable file is produced. This option is useful to compile modules
separately.

-custom

Link in “custom runtime” mode. In the default linking mode, the linker produces bytecode
that is intended to be executed with the shared runtime system, camlrun. In the custom
runtime mode, the linker produces an output file that contains both the runtime system and
the bytecode for the program. The resulting file is considerably larger, but it can be executed
directly, even if the camlrun command is not installed. Moreover, the “custom runtime” mode
enables linking Caml Light code with user-defined C functions, as described in chapter 30.

Unix: Never strip an executable produced with the -custom option.

PC: This option is not implemented.
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Mac: This option is not implemented.

-files response-file
Process the files whose names are listed in file response-file, just as if these names appeared
on the command line. File names in response-file are separated by blanks (spaces, tabs,
newlines). This option allows to overcome silly limitations on the length of the command
line.

-g Add debugging information at the end of the executable bytecode file produced by the linking
phase. This option has no effect on the compilation phase. Debugging information is required
in particular by the catch-all exceptions handlers provided by the module printexc in the
standard library.

-i Cause the compiler to print the declared types, exceptions, and global variables (with their
inferred types) when compiling an implementation (.ml file). This can be useful to check
the types inferred by the compiler. Also, since the output follows the syntax of module
interfaces, it can help in writing an explicit interface (.mli file) for a file: just redirect the
standard output of the compiler to a .mli file, and edit that file to remove all declarations
of unexported globals.

-I directory
Add the given directory to the list of directories searched for compiled interface files (.zi) and
compiled object code files (.zo). By default, the current directory is searched first, then the
standard library directory. Directories added with -I are searched after the current directory,
but before the standard library directory. When several directories are added with several -I
options on the command line, these directories are searched from right to left (the rightmost
directory is searched first, the leftmost is searched last). (Directories can also be added to
the search path from inside the programs with the #directory directive; see chapter 24.)

-o exec-file
Specify the name of the output file produced by the linker.

Unix: The default output name is a.out, in keeping with the tradition.

PC: The default output name is CAML_OUT.EXE.

Mac: The default output name is Caml.Out.

-O module-set
Specify which set of standard modules is to be implicitly “opened” at the beginning of a
compilation. There are three module sets currently available:

cautious
provides the standard operations on integers, floating-point numbers, characters, strings,
arrays, . . . , as well as exception handling, basic input/output, etc. Operations from the
cautious set perform range and bound checking on string and array operations, as well
as various sanity checks on their arguments.
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fast
provides the same operations as the cautious set, but without sanity checks on their
arguments. Programs compiled with -O fast are therefore slightly faster, but unsafe.

none
suppresses all automatic opening of modules. Compilation starts in an almost empty
environment. This option is not of general use, except to compile the standard library
itself.

The default compilation mode is -O cautious. See chapter 21 for a complete listing of the
modules in the cautious and fast sets.

-v Print the version number the various passes of the compiler.

25.3 Modules and the file system

This short section is intended to clarify the relationship between the names of the modules and the
names of the files that contain their compiled interface and compiled implementation.

The compiler always derives the name of the compiled module by taking the base name of the
source file (.ml or .mli file). That is, it strips the leading directory name, if any, as well as the .ml
or .mli suffix. The produced .zi and .zo files have the same base name as the source file; hence,
the compiled files produced by the compiler always have their base name equal to the name of the
module they describe (for .zi files) or implement (for .zo files).

For compiled interface files (.zi files), this invariant must be preserved at all times, since the
compiler relies on it to load the compiled interface file for the modules that are used from the module
being compiled. Hence, it is risky and generally incorrect to rename .zi files. It is admissible to
move them to another directory, if their base name is preserved, and the correct -I options are
given to the compiler.

Compiled bytecode files (.zo files), on the other hand, can be freely renamed once created.
That’s because 1- .zo files contain the true name of the module they define, so there is no need to
derive that name from the file name; 2- the linker never attempts to find by itself the .zo file that
implements a module of a given name: it relies on the user providing the list of .zo files by hand.

25.4 Common errors

This section describes and explains the most frequently encountered error messages.

Cannot find file filename
The named file could not be found in the current directory, nor in the directories of the search
path. The filename is either a compiled interface file (.zi file), or a compiled bytecode file
(.zo file). If filename has the format mod.zi, this means you are trying to compile a file that
references identifiers from module mod, but you have not yet compiled an interface for module
mod. Fix: compile mod.mli or mod.ml first, to create the compiled interface mod.zi.

If filename has the format mod.zo, this means you are trying to link a bytecode object file
that does not exist yet. Fix: compile mod.ml first.
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If your program spans several directories, this error can also appear because you haven’t
specified the directories to look into. Fix: add the correct -I options to the command line.

Corrupted compiled interface file filename
The compiler produces this error when it tries to read a compiled interface file (.zi file) that
has the wrong structure. This means something went wrong when this .zi file was written:
the disk was full, the compiler was interrupted in the middle of the file creation, and so on.
This error can also appear if a .zi file is modified after its creation by the compiler. Fix:
remove the corrupted .zi file, and rebuild it.

Expression of type t1 cannot be used with type t2
This is by far the most common type error in programs. Type t1 is the type inferred for the
expression (the part of the program that is displayed in the error message), by looking at the
expression itself. Type t2 is the type expected by the context of the expression; it is deduced
by looking at how the value of this expression is used in the rest of the program. If the two
types t1 and t2 are not compatible, then the error above is produced.

In some cases, it is hard to understand why the two types t1 and t2 are incompatible. For
instance, the compiler can report that “expression of type foo cannot be used with type foo”,
and it really seems that the two types foo are compatible. This is not always true. Two
type constructors can have the same name, but actually represent different types. This can
happen if a type constructor is redefined. Example:

type foo = A | B;;

let f = function A -> 0 | B -> 1;;

type foo = C | D;;

f C;;

This result in the error message “expression C of type foo cannot be used with type foo”.

Incompatible types with the same names can also appear when a module is changed and
recompiled, but some of its clients are not recompiled. That’s because type constructors in
.zi files are not represented by their name (that would not suffice to identify them, because
of type redefinitions), but by unique stamps that are assigned when the type declaration is
compiled. Consider the three modules:

mod1.ml: type t = A | B;;

let f = function A -> 0 | B -> 1;;

mod2.ml: let g x = 1 + mod1__f(x);;

mod3.ml: mod2__g mod1__A;;

Now, assume mod1.ml is changed and recompiled, but mod2.ml is not recompiled. The recom-
pilation of mod1.ml can change the stamp assigned to type t. But the interface mod2.zi will
still use the old stamp for mod1__t in the type of mod2__g. Hence, when compiling mod3.ml,
the system complains that the argument type of mod2__g (that is, mod1__t with the old
stamp) is not compatible with the type of mod1__A (that is, mod1__t with the new stamp).
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Fix: use make or a similar tool to ensure that all clients of a module mod are recompiled when
the interface mod.zi changes. To check that the Makefile contains the right dependencies,
remove all .zi files and rebuild the whole program; if no “Cannot find file” error appears,
you’re all set.

mod__name is referenced before being defined
This error appears when trying to link an incomplete or incorrectly ordered set of files. Either
you have forgotten to provide an implementation for the module named mod on the command
line (typically, the file named mod.zo, or a library containing that file). Fix: add the missing
.ml or .zo file to the command line. Or, you have provided an implementation for the module
named mod, but it comes too late on the command line: the implementation of mod must
come before all bytecode object files that reference one of the global variables defined in
module mod. Fix: change the order of .ml and .zo files on the command line.

Of course, you will always encounter this error if you have mutually recursive functions across
modules. That is, function mod1__f calls function mod2__g, and function mod2__g calls
function mod1__f. In this case, no matter what permutations you perform on the command
line, the program will be rejected at link-time. Fixes:

• Put f and g in the same module.

• Parameterize one function by the other. That is, instead of having

mod1.ml: let f x = ... mod2__g ... ;;

mod2.ml: let g y = ... mod1__f ... ;;

define

mod1.ml: let f g x = ... g ... ;;

mod2.ml: let rec g y = ... mod1__f g ... ;;

and link mod1 before mod2.

• Use a reference to hold one of the two functions, as in :

mod1.ml: let forward_g =

ref((fun x -> failwith "forward_g") : <type>);;

let f x = ... !forward_g ... ;;

mod2.ml: let g y = ... mod1__f ... ;;

mod1__forward_g := g;;

Unavailable C primitive f
This error appears when trying to link code that calls external functions written in C in
“default runtime” mode. As explained in chapter 30, such code must be linked in “custom
runtime” mode. Fix: add the -custom option, as well as the (native code) libraries and
(native code) object files that implement the required external functions.
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The toplevel system (camllight)

This chapter describes the toplevel system for Caml Light, that permits interactive use of the Caml
Light system, through a read-eval-print loop. In this mode, the system repeatedly reads Caml
Light phrases from the input, then typechecks, compile and evaluate them, then prints the inferred
type and result value, if any. The system prints a # (sharp) prompt before reading each phrase. A
phrase can extends several lines; phrases are delimited by ;; (the final double-semicolon).

From the standpoint of the module system, all phrases entered at toplevel are treated as the
implementation of a module named top. Hence, all toplevel definitions are entered in the module
top.

Unix: The toplevel system is started by the command camllight. Phrases are read on standard in-
put, results are printed on standard output, errors on standard error. End-of-file on standard
input terminates camllight (see also the quit system function below).

The toplevel system does not perform line editing, but it can easily be used in conjunction with
an external line editor such as fep; just run fep -emacs camllight or fep -vi camllight.

At any point, the parsing, compilation or evaluation of the current phrase can be interrupted
by pressing ctrl-C (or, more precisely, by sending the intr signal to the camllight process).
This goes back to the # prompt.

Mac: The toplevel system is presented as the standalone Macintosh application Caml Light. This
application does not require the Macintosh Programmer’s Workshop to run.

Once launched from the Finder, the application opens two windows, “Caml Light Input” and
“Caml Light Output”. Phrases are entered in the “Caml Light Input” window. The “Caml
Light Output” window displays a copy of the input phrases as they are processed by the Caml
Light toplevel, interspersed with the toplevel responses. The “Return” key sends the contents
of the Input window to the Caml Light toplevel. The “Enter” key inserts a newline without
sending the contents of the Input window. (This can be configured with the “Preferences”
menu item.)

The contents of the input window can be edited at all times, with the standard Macintosh
interface. An history of previously entered phrases is maintained, and can be accessed with
the “Previous entry” (command-P) and “Next entry” (command-N) menu items.
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To quit the Caml Light application, either select “Quit” from the “Files” menu, or use the
quit function described below.

At any point, the parsing, compilation or evaluation of the current phrase can be interrupted
by pressing “command-dot”, or by selecting the item “Interrupt Caml Light” in the “Caml
Light” menu. This goes back to the # prompt.

PC: The toplevel system is started by the command caml. (The full name camllight had to be
truncated because of the well-known limitations of MS-DOS.) Phrases are read on standard
input, results are printed on standard output, errors on standard error. The quit system
function terminates caml.

A number of TSR line editors that provide line editing and history facilities for the command.com
command-line interpreter also work in conjunction with caml. Some TSR’s that work:
dosedit, ced, toddy. Some TSR’s that don’t work: doskey from the MS-DOS 5.0 dis-
tribution.

With the 8086 version, the parsing, compilation or evaluation of the current phrase can be
interrupted by pressing ctrl-break. This goes back to the # prompt. Pressing ctrl-C

interrupts input, but does not stop a phrase that performs no input-output.

With the 80386 version, pressing ctrl-C or ctrl-break interrupts the system at any point:
during parsing as well as during compilation or evaluation.

26.1 Options

The following command-line options are recognized by the caml or camllight commands.

-I directory
Add the given directory to the list of directories searched for compiled interface files (.zi) and
compiled object code files (.zo). By default, the current directory is searched first, then the
standard library directory. Directories added with -I are searched after the current directory,
but before the standard library directory. When several directories are added with several -I
options on the command line, these directories are searched from right to left (the rightmost
directory is searched first, the leftmost is searched last). Directories can also be added to the
search path once the toplevel is running with the #directory directive; see chapter 24.

-O module-set
Specify which set of standard modules is to be implicitly “opened” when the toplevel starts.
There are three module sets currently available:

cautious
provides the standard operations on integers, floating-point numbers, characters, strings,
arrays, . . . , as well as exception handling, basic input/output, . . .Operations from the
cautious set perform range and bound checking on string and vector operations, as well
as various sanity checks on their arguments.

fast
provides the same operations as the cautious set, but without sanity checks on their
arguments. Programs compiled with -O fast are therefore slightly faster, but unsafe.
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none
suppresses all automatic opening of modules. Compilation starts in an almost empty
environment. This option is not of general use.

The default compilation mode is -O cautious. See chapter 21 for a complete listing of the
modules in the cautious and fast sets.

26.2 Toplevel control functions

The standard library module toplevel, opened by default when the toplevel system is launched,
provides a number of functions that control the toplevel behavior, load files in memory, and trace
program execution.

quit ()

Exit the toplevel loop and terminate the Caml Light command.

include "filename"
Read, compile and execute source phrases from the file filename. The .ml extension is auto-
matically added to filename, if not present. This is textual inclusion: phrases are processed
just as if they were typed on standard input. In particular, global identifiers defined by these
phrases are entered in the module named top, not in a new module.

load "filename"
Load in memory the source code for a module implementation. Read, compile and execute
source phrases from file filename. The .ml extension is automatically added to filename, if
not present. The load function behaves much like include, except that a new module is
created, with name the base name of filename. Global identifiers defined in file filename are
entered in this module, instead of the top module as in the case of include. For instance,
assuming file foo.ml contains the single phrase

let bar = 1;;

executing load "foo" defines the identifier foo__bar with value 1.

Caveat: the loaded module is not automatically opened: the identifier bar does not automat-
ically complete to foo__bar. To achieve this, you must execute the directive #open "foo"

afterwards.

load_object "filename"
Load in memory the compiled bytecode contained in file filename. The .zo extension is
automatically added to filename, if not present. The bytecode file has been produced by the
standalone compiler camlc. Global identifiers defined in file filename are entered in their own
module, not in the top module, just as with the load function.

trace "function-name"
After the execution of trace "foo", all calls to the global function named foo will be
“traced”. That is, the argument and the result are displayed for each call, as well as the
exceptions escaping out of foo, either raised by foo itself, or raised by one of the functions
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called from foo. If foo is a curried function, each argument is printed as it is passed to the
function.

The function name cannot be a qualified identifier. Only unqualified identifiers are recognized.
Hence, only functions belonging to one of the opened modules can be traced.

untrace "function-name"
Executing untrace "foo" stops all tracing over the global function named foo.

The function name cannot be a qualified identifier. Only unqualified identifiers are recognized.
Hence, only functions belonging to one of the opened modules can be traced.

cd "directory-name"
Set the current working directory.

gc ()

Finish the current garbage collection cycle, and return the amount of free space in the heap,
in bytes. If you want to perform a complete GC cycle, call this function twice.

26.3 The toplevel and the module system

Toplevel phrases can refer to identifiers defined in modules other than the top module with
the same mechanisms as for separately compiled modules: either by using qualified identifiers
(modulename__localname), or by using unqualified identifiers that are automatically completed by
searching the list of opened modules. (See section 2 of the reference manual.) The modules opened
at startup are given in the documentation for the standard library. Other modules can be opened
with the #open directive.

However, before referencing a global variable from a module other than the top module, a
definition of that global variable must have been entered in memory. At start-up, the toplevel
system contains the definitions for all the identifiers in the standard library. The definitions for
user modules can be entered with the load or load_object functions described above. Referencing
a global variable for which no definition has been provided by load or load_object results in
the error “Identifier foo__bar is referenced before being defined”. Since this is a tricky
point, let us consider some examples.

1. The library function sub_string is defined in module string. This module is part of the
standard library, and is one of the modules automatically opened at start-up. Hence, both
phrases

sub_string "qwerty" 1 3;;

string__sub_string "qwerty" 1 3;;

are correct, without having to use #open, load, or load_object.

2. The library function printf is defined in module printf. This module is part of the standard
library, but it is not automatically opened at start-up. Hence, the phrase

printf__printf "%s %s" "hello" "world";;
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is correctly executed, while

printf "%s %s" "hello" "world";;

causes the error “Variable printf is unbound”, since none of the currently opened mod-
ules define a global with local name printf. However,

#open "printf";;

printf "%s %s" "hello" "world";;

executes correctly.

3. Assume the file foo.ml resides in the current directory, and contains the single phrase

let x = 1;;

When the toplevel starts, references to x will cause the error “Variable x is unbound”.
References to foo__x will cause the error “Cannot find file foo.zi”, since the typechecker
is attempting to load the compiled interface for module foo in order to find the type of x. To
load in memory the module foo, just do:

load "foo";;

Then, references to foo__x typecheck and evaluate correctly. Since load does not open the
module it loads, references to x will still fail with the error “Variable x is unbound”. You
will have to do

#open "foo";;

explicitly, for x to complete automatically into foo__x.

4. Finally, assume the file foo.ml above has been previously compiled with the camlc -c com-
mand. The current directory therefore contains a compiled interface foo.zi, claiming that
foo__x is a global variable with type int, and a compiled bytecode file foo.zo, defining
foo__x to have the value 1. When the toplevel starts, references to foo__x will cause the
error “foo__x is referenced before being defined”. In contrast with case 3 above, the
typechecker has succeeded in finding the compiled interface for module foo. But execution
cannot proceed, because no definition for foo__x has been entered in memory. To do so,
execute:

load_object "foo";;

This loads the file foo.zo in memory, therefore defining foo__x. Then, references to foo__x

evaluate correctly. As in case 3 above, references to x still fail, because load_object does
not open the module it loads. Again, you will have to do

#open "foo";;

explicitly, for x to complete automatically into foo__x.
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26.4 Common errors

This section describes and explains the most frequently encountered error messages.

Cannot find file filename
The named file could not be found in the current directory, nor in the directories of the search
path.

If filename has the format mod.zi, this means the current phrase references identifiers from
module mod, but you have not yet compiled an interface for module mod. Fix: either load
the file mod.ml, which will also create in memory the compiled interface for module mod; or
use camlc to compile mod.mli or mod.ml, creating the compiled interface mod.zi, before
you start the toplevel.

If filename has the format mod.zo, this means you are trying to load with load_object a
bytecode object file that does not exist yet. Fix: compile mod.ml with camlc before you
start the toplevel. Or, use load instead of load_object to load the source code instead of a
compiled object file.

If filename has the format mod.ml, this means load or include could not find the specified
source file. Fix: check the spelling of the file name, or write it if it does not exist.

mod__name is referenced before being defined
You have neglected to load in memory an implementation for a module, with load or
load_object. This is explained in full detail in section 26.3 above.

Corrupted compiled interface file filename
See section 25.4.

Expression of type t1 cannot be used with type t2
See section 25.4.

26.5 Building custom toplevel systems: camlmktop

The camlmktop command builds Caml Light toplevels that contain user code preloaded at start-up.

Mac: This command is not available in the Macintosh version.

PC: This command is not available in the PC versions.

The camlmktop command takes as argument a set of .zo files, and links them with the object
files that implement the Caml Light toplevel. The typical use is:

camlmktop -o mytoplevel foo.zo bar.zo gee.zo

This creates the bytecode file mytoplevel, containing the Caml Light toplevel system, plus the
code from the three .zo files. To run this toplevel, give it as argument to the camllight command:

camllight mytoplevel
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This starts a regular toplevel loop, except that the code from foo.zo, bar.zo and gee.zo is already
loaded in memory, just as if you had typed:

load_object "foo";;

load_object "bar";;

load_object "gee";;

on entrance to the toplevel. The modules foo, bar and gee are not opened, though; you still have
to do

#open "foo";;

yourself, if this is what you wish.

26.6 Options

The following command-line options are recognized by camlmktop.

-custom

Link in “custom runtime” mode. See the corresponding option for camlc, in chapter 25.

-I directory
Add the given directory to the list of directories searched for compiled object code files (.zo).

-o exec-file
Specify the name of the toplevel file produced by the linker. The default is camltop.out.



250 Part VI. The Caml Light commands



Chapter 27

The runtime system (camlrun)

The camlrun command executes bytecode files produced by the linking phase of the camlc com-
mand.

Mac: This command is a MPW tool, not a standalone Macintosh application.

27.1 Overview

The camlrun command comprises three main parts: the bytecode interpreter, that actually executes
bytecode files; the memory allocator and garbage collector; and a set of C functions that implement
primitive operations such as input/output.

The usage for camlrun is:

camlrun options bytecode-executable arg1 arg2 . . . argn

The first non-option argument is taken to be the name of the file containing the executable bytecode.
(That file is searched in the executable path as well as in the current directory.) The remaining
arguments are passed to the Caml Light program, in the string array sys__command_line. Element
0 of this array is the name of the bytecode executable file; elements 1 to n are the remaining
arguments arg1 to argn.

As mentioned in chapter 25, in most cases, the bytecode executable files produced by the
camlc command are self-executable, and manage to launch the camlrun command on themselves
automatically. That is, assuming caml.out is a bytecode executable file,

caml.out arg1 arg2 . . . argn

works exactly as
camlrun caml.out arg1 arg2 . . . argn

Notice that it is not possible to pass options to camlrun when invoking directly caml.out.

27.2 Options

The following command-line option is recognized by camlrun. (There are additional options to
control the behavior of the garbage collector, but they are not for the casual user.)
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-v Cause camlrun to print various diagnostic messages relative to memory allocation and garbage
collection. Useful to debug memory-related problems.

27.3 Common errors

This section describes and explains the most frequently encountered error messages.

filename: no such file or directory

If filename is the name of a self-executable bytecode file, this means that either that file does
not exist, or that it failed to run the camlrun bytecode interpreter on itself. The second
possibility indicates that Caml Light has not been properly installed on your system.

Cannot exec camlrun

(When launching a self-executable bytecode file.) The camlrun command could not be found
in the executable path. Check that Caml Light has been properly installed on your system.

Cannot find the bytecode file

The file that camlrun is trying to execute (e.g. the file given as first non-option argument to
camlrun) either does not exist, or is not a valid executable bytecode file.

Truncated bytecode file

The file that camlrun is trying to execute is not a valid executable bytecode file. Probably it
has been truncated or mangled since created. Erase and rebuild it.

Uncaught exception

The program being executed contains a “stray” exception. That is, it raises an exception at
some point, and this exception is never caught. This causes immediate termination of the
program. If you wish to know which exception thus escapes, use the printexc__f function
from the standard library (and don’t forget to link your program with the -g option).

Out of memory

The program being executed requires more memory than available. Either the program builds
too large data structures; or the program contains too many nested function calls, and the
stack overflows. In some cases, your program is perfectly correct, it just requires more memory
than your machine provides. (This happens quite frequently on small microcomputers, but
is unlikely on Unix machines.) In other cases, the “out of memory” message reveals an error
in your program: non-terminating recursive function, allocation of an excessively large array
or string, attempts to build an infinite list or other data structure, . . .

To help you diagnose this error, run your program with the -v option to camlrun. If it
displays lots of “Growing stack. . . ” messages, this is probably a looping recursive function.
If it displays lots of “Growing heap. . . ” messages, with the heap size growing slowly, this is
probably an attempt to construct a data structure with too many (infinitely many?) cells.
If it displays few “Growing heap. . . ” messages, but with a huge increment in the heap size,
this is probably an attempt to build an excessively large array or string.
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The librarian (camllibr)

Mac: This command is a MPW tool, not a standalone Macintosh application.

28.1 Overview

The camllibr program packs in one single file a set of bytecode object files (.zo files). The resulting
file is also a bytecode object file and also has the .zo extension. It can be passed to the link phase
of the camlc compiler in replacement of the original set of bytecode object files. That is, after
running

camllibr -o library.zo mod1.zo mod2.zo mod3.zi mod4.zo

all calls to the linker with the form

camlc . . . library.zo . . .

are exactly equivalent to

camlc . . . mod1.zo mod2.zo mod3.zi mod4.zo . . .

The typical use of camllibr is to build a library composed of several modules: this way, users
of the library have only one .zo file to specify on the command line to camlc, instead of a bunch
of .zo files, one per module contained in the library.

The linking phase of camlc is clever enough to discard the code corresponding to useless phrases:
in particular, definitions for global variables that are never used after their definitions. Hence, there
is no problem with putting many modules, even rarely used ones, into one single library: this will
not result in bigger executables.

The usage for camllibr is:

camllibr options file1 .zo . . . filen .zo

where file1 .zo through filen .zo are the object files to pack together. The order in which these file
names are presented on the command line is relevant: the compiled phrases contained in the library
will be executed in that order. (Remember that it is a link-time error to refer to a global variable
that has not yet been defined.)
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28.2 Options

The following command-line options are recognized by camllibr.

-files response-file
Process the files whose names are listed in file response-file, just as if these names appeared
on the command line. File names in response-file are separated by blanks (spaces, tabs,
newlines). This option allows to overcome silly limitations on the length of the command
line.

-I directory
Add the given directory to the list of directories searched for the input .zo files. By default,
the current directory is searched first, then the standard library directory. Directories added
with -I are searched after the current directory, but before the standard library directory.
When several directories are added with several -I options on the command line, these direc-
tories are searched from right to left (the rightmost directory is searched first, the leftmost is
searched last).

-o library-name
Specify the name of the output file. The default is library.zo.

28.3 Turning code into a library

To develop a library, it is usually more convenient to split it into several modules, that reflect the
internal structure of the library. From the standpoint of the library users, however, it is preferable
to view the library as a single module, with only one interface file (.zi file) and one implementation
file (.zo file): linking is easier, and there is no need to put a bunch of #open directives, nor to have
to remember the internal structure of the library.

The camllibr command allows having a single .zo file for the whole library. Here is how the
Caml Light module system can be used (some say “abused”) to have a single .zi file for the whole
library. To be more concrete, assume that the library comprises three modules, windows, images
and buttons. The idea is to add a fourth module, mylib, that re-exports the public parts of
windows, images and buttons. The interface mylib.mli contains definitions for those types that
are public (exported with their definitions), declarations for those types that are abstract (exported
without their definitions), and declarations for the functions that can be called from the user’s code:

(* File mylib.mli *)

type ’a option = None | Some of ’a;; (* a public type *)

type window and image and button;; (* three abstract types *)

value new_window : int -> int -> window (* the public functions *)

and draw_image : image -> window -> int -> int -> unit

and ...

The implementation of the mylibmodule simply equates the abstract types and the public functions
to the corresponding types and functions in the modules windows, images and buttons:
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(* File mylib.ml *)

type window == windows__win

and image == images__pixmap

and button == buttons__t;;

let new_window = windows__open_window

and draw_image = images__draw

and ...

The files windows.ml, images.ml and buttons.ml can open the mylibmodule, to access the public
types defined in the interface mylib.mli, such as the option type. Of course, these modules must
not reference the abstract types nor the public functions, to avoid circularities.

Types such as windows__win in the example above can be exported by the windows module
either abstractly or concretely (with their definition). Often, it is necessary to export them con-
cretely, because the other modules in the library (images, buttons) need to build or destructure
directly values of that type. Even if windows__win is exported concretely by the windows module,
that type will remain abstract to the library user, since it is abstracted by the public interface
mylib.

The actual building of the library mylib proceeds as follows:

camlc -c mylib.mli # create mylib.zi

camlc -c windows.mli windows.ml images.mli images.ml

camlc -c buttons.mli buttons.ml

camlc -c mylib.ml # create mylib.zo

mv mylib.zo tmplib.zo # renaming to avoid overwriting mylib.zo

camllibr -o mylib.zo windows.zo images.zo buttons.zo tmplib.zo

Then, copy mylib.zi and mylib.zo to a place accessible to the library users. The other .zi and
.zo files need not be copied.
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Chapter 29

Lexer and parser generators
(camllex, camlyacc)

This chapter describes two program generators: camllex, that produces a lexical analyzer from a
set of regular expressions with associated semantic actions, and camlyacc, that produces a parser
from a grammar with associated semantic actions.

These program generators are very close to the well-known lex and yacc commands that can
be found in most C programming environments. This chapter assumes a working knowledge of lex
and yacc: while it describes the input syntax for camllex and camlyacc and the main differences
with lex and yacc, it does not explain the basics of writing a lexer or parser description in lex and
yacc. Readers unfamiliar with lex and yacc are referred to “Compilers: principles, techniques,
and tools” by Aho, Sethi and Ullman (Addison-Wesley, 1986), “Compiler design in C” by Holub
(Prentice-Hall, 1990), or “Lex & Yacc”, by Mason and Brown (O’Reilly, 1990).

Streams and stream matching, as described in chapter 11, provide an alternative way to write
lexers and parsers. The stream matching technique is more powerful than the combination of
camllex and camlyacc in some cases (higher-order parsers), but less powerful in other cases (prece-
dences). Choose whichever approach is more adapted to your parsing problem.

Mac: These commands are MPW tool, not standalone Macintosh applications.

PC86: These commands are not available in the 8086 PC version.

29.1 Overview of camllex

The camllex command produces a lexical analyzer from a set of regular expressions with attached
semantic actions, in the style of lex. Assuming the input file is lexer .mll, executing

camllex lexer .mll

produces Caml Light code for a lexical analyzer in file lexer .ml. This file defines one lexing func-
tion per entry point in the lexer definition. These functions have the same names as the entry
points. Lexing functions take as argument a lexer buffer, and return the semantic attribute of the
corresponding entry point.
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Lexer buffers are an abstract data type implemented in the standard library module lexing.
The functions create_lexer_channel, create_lexer_string and create_lexer from module
lexing create lexer buffers that read from an input channel, a character string, or any reading
function, respectively. (See the description of module lexing in chapter 21.)

When used in conjunction with a parser generated by camlyacc, the semantic actions compute
a value belonging to the type token defined by the generated parsing module. (See the description
of camlyacc below.)

29.2 Syntax of lexer definitions

The format of lexer definitions is as follows:

{ header }

rule entrypoint =
parse regexp { action }

| . . .

| regexp { action }

and entrypoint =
parse . . .

and . . .

;;

Comments are delimited by (* and *), as in Caml Light.

29.2.1 Header

The header section is arbitrary Caml Light text enclosed in curly braces. It can be omitted. If it is
present, the enclosed text is copied as is at the beginning of the output file. Typically, the header
section contains the #open directives required by the actions, and possibly some auxiliary functions
used in the actions.

29.2.2 Entry points

The names of the entry points must be valid Caml Light identifiers.

29.2.3 Regular expressions

The regular expressions are in the style of lex, with a more Caml-like syntax.

‘ char ‘
A character constant, with the same syntax as Caml Light character constants. Match the
denoted character.

_ Match any character.

eof

Match the end of the lexer input.
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" string "

A string constant, with the same syntax as Caml Light string constants. Match the corre-
sponding sequence of characters.

[ character-set ]
Match any single character belonging to the given character set. Valid character sets are:
single character constants ‘ c ‘; ranges of characters ‘ c1 ‘ - ‘ c2 ‘ (all characters between
c1 and c2, inclusive); and the union of two or more character sets, denoted by concatenation.

[ ^ character-set ]
Match any single character not belonging to the given character set.

regexp *

(Repetition.) Match the concatenation of zero or more strings that match regexp.

regexp +

(Strict repetition.) Match the concatenation of one or more strings that match regexp.

regexp ?

(Option.) Match either the empty string, or a string matching regexp.

regexp1 | regexp2

(Alternative.) Match any string that matches either regexp1 or regexp2

regexp1 regexp2

(Concatenation.) Match the concatenation of two strings, the first matching regexp1, the
second matching regexp2.

( regexp )

Match the same strings as regexp.

Concerning the precedences of operators, * and + have highest precedence, followed by ?, then
concatenation, then | (alternation).

29.2.4 Actions

The actions are arbitrary Caml Light expressions. They are evaluated in a context where the
identifier lexbuf is bound to the current lexer buffer. Some typical uses for lexbuf, in conjunction
with the operations on lexer buffers provided by the lexing standard library module, are listed
below.

lexing__get_lexeme lexbuf

Return the matched string.

lexing__get_lexeme_char lexbuf n

Return the nth character in the matched string. The first character corresponds to n = 0.

lexing__get_lexeme_start lexbuf

Return the absolute position in the input text of the beginning of the matched string. The
first character read from the input text has position 0.
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lexing__get_lexeme_end lexbuf

Return the absolute position in the input text of the end of the matched string. The first
character read from the input text has position 0.

entrypoint lexbuf
(Where entrypoint is the name of another entry point in the same lexer definition.) Recursively
call the lexer on the given entry point. Useful for lexing nested comments, for example.

29.3 Overview of camlyacc

The camlyacc command produces a parser from a context-free grammar specification with attached
semantic actions, in the style of yacc. Assuming the input file is grammar.mly, executing

camlyacc options grammar.mly

produces Caml Light code for a parser in the file grammar.ml, and its interface in file grammar.mli.

The generated module defines one parsing function per entry point in the grammar. These
functions have the same names as the entry points. Parsing functions take as arguments a lexical
analyzer (a function from lexer buffers to tokens) and a lexer buffer, and return the semantic
attribute of the corresponding entry point. Lexical analyzer functions are usually generated from a
lexer specification by the camllex program. Lexer buffers are an abstract data type implemented
in the standard library module lexing. Tokens are values from the concrete type token, defined
in the interface file grammar.mli produced by camlyacc.

29.4 Syntax of grammar definitions

Grammar definitions have the following format:

%{

header
}%

declarations
%%

rules
%%

trailer

Comments are enclosed between /* and */ pairs, as in C.

29.4.1 Header and trailer

The header and the trailer sections are Caml Light code that is copied as is into file grammar.ml.
Both sections are optional. The header goes at the beginning of the output file; it usually contains
#open directives required by the semantic actions of the rules. The trailer goes at the end of the
output file.
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29.4.2 Declarations

Declarations are given one per line. They all start with a % sign.

%token symbol . . . symbol
Declare the given symbols as tokens (terminal symbols). These symbols are added as constant
constructors for the token concrete type.

%token < type > symbol . . . symbol
Declare the given symbols as tokens with an attached attribute of the given type. These sym-
bols are added as constructors with arguments of the given type for the token concrete type.
The type part is an arbitrary Caml Light type expression, except that all type constructor
names must be fully qualified (e.g. modname__typename) for all types except standard built-in
types, even if the proper #open directives (e.g. #open "modname") were given in the header
section. That’s because the header is copied only to the .ml output file, but not to the .mli
output file, while the type part of a %token declaration is copied to both.

%start symbol . . . symbol
Declare the given symbols as entry points for the grammar. For each entry point, a parsing
function with the same name is defined in the output module. Non-terminals that are not
declared as entry points have no such parsing function. Start symbols must be given a type
with the %type directive below.

%type < type > symbol . . . symbol
Specify the type of the semantic attributes for the given symbols. This is mandatory for start
symbols only. Other nonterminal symbols need not be given types by hand: these types will
be inferred when running the output files through the Caml Light compiler (unless the -s

option is in effect). The type part is an arbitrary Caml Light type expression, except that
all type constructor names must be fully qualified (e.g. modname__typename) for all types
except standard built-in types, even if the proper #open directives (e.g. #open "modname")
were given in the header section. That’s because the header is copied only to the .ml output
file, but not to the .mli output file, while the type part of a %token declaration is copied to
both.

%left symbol . . . symbol

%right symbol . . . symbol

%nonassoc symbol . . . symbol

Associate precedences and associativities to the given symbols. All symbols on the same line
are given the same precedence. They have higher precedence than symbols declared before
in a %left, %right or %nonassoc line. They have lower precedence than symbols declared
after in a %left, %right or %nonassoc line. The symbols are declared to associate to the
left (%left), to the right (%right), or to be non-associative (%nonassoc). The symbols are
usually tokens. They can also be dummy nonterminals, for use with the %prec directive inside
the rules.
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29.4.3 Rules

The syntax for rules is as usual:

nonterminal :
symbol . . . symbol { semantic-action }

| . . .

| symbol . . . symbol { semantic-action }

;

Rules can also contain the %prec symbol directive in the right-hand side part, to override the
default precedence and associativity of the rule with the precedence and associativity of the given
symbol.

Semantic actions are arbitrary Caml Light expressions, that are evaluated to produce the se-
mantic attribute attached to the defined nonterminal. The semantic actions can access the semantic
attributes of the symbols in the right-hand side of the rule with the $ notation: $1 is the attribute
for the first (leftmost) symbol, $2 is the attribute for the second symbol, etc.

Actions occurring in the middle of rules are not supported. Error recovery is not implemented.

29.5 Options

The camlyacc command recognizes the following options:

-v Generate a description of the parsing tables and a report on conflicts resulting from ambigu-
ities in the grammar. The description is put in file grammar.output.

-s Generate a grammar.ml file with smaller phrases. Semantic actions are presented in the
grammar.ml output file as one large vector of functions. By default, this vector is built by
a single phrase. When the grammar is large, or contains complicated semantic actions, the
resulting phrase may require large amounts of memory to be compiled by Caml Light. With
the -s option, the vector of actions is constructed incrementally, one phrase per action. This
lowers the memory requirements for the compiler, but it is no longer possible to infer the
types of nonterminal symbols: typechecking is turned off on symbols that do not have a type
specified by a %type directive.

-bprefix
Name the output files prefix.ml, prefix.mli, prefix.output, instead of the default naming
convention.

29.6 A complete example

The all-time favorite: a desk calculator. This program reads arithmetic expressions on standard
input, one per line, and prints their values. Here is the grammar definition:

/* File parser.mly */

%token <int> INT

%token PLUS MINUS TIMES DIV
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%token LPAREN RPAREN

%token EOL

%right PLUS MINUS /* lowest precedence */

%right TIMES DIV /* medium precedence */

%nonassoc UMINUS /* highest precedence */

%start Main /* the entry point */

%type <int> Main

%%

Main:

Expr EOL { $1 }

;

Expr:

INT { $1 }

| LPAREN Expr RPAREN { $2 }

| Expr PLUS Expr { $1 + $3 }

| Expr MINUS Expr { $1 - $3 }

| Expr TIMES Expr { $1 * $3 }

| Expr DIV Expr { $1 / $3 }

| MINUS Expr %prec UMINUS { - $2 }

;

Here is the definition for the corresponding lexer:

(* File lexer.mll *)

{

#open "parser";; (* The type token is defined in parser.mli *)

exception Eof;;

}

rule Token = parse

[‘ ‘ ‘\t‘] { Token lexbuf } (* skip blanks *)

| [‘\n‘ ] { EOL }

| [‘0‘-‘9‘]+ { INT(int_of_string (get_lexeme lexbuf)) }

| ‘+‘ { PLUS }

| ‘-‘ { MINUS }

| ‘*‘ { TIMES }

| ‘/‘ { DIV }

| ‘(‘ { LPAREN }

| ‘)‘ { RPAREN }

| eof { raise Eof }

;;

Here is the main program, that combines the parser with the lexer:

(* File calc.ml *)

try

let lexbuf = lexing__create_lexer_channel std_in in

while true do
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let result = parser__Main lexer__Token lexbuf in

print_int result; print_newline(); flush std_out

done

with Eof ->

()

;;

To compile everything, execute:

camllex lexer.mll # generates lexer.ml

camlyacc parser.mly # generates parser.ml and parser.mli

camlc -c parser.mli

camlc -c lexer.ml

camlc -c parser.ml

camlc -c calc.ml

camlc -o calc lexer.zo parser.zo calc.zo
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Interfacing C with Caml Light

This chapter describes how user-defined primitives, written in C, can be added to the Caml Light
runtime system and called from Caml Light code.

Mac: This facility is not implemented in the Macintosh version.

PC: This facility is not implemented in the PC versions.

30.1 Overview and compilation information

30.1.1 Declaring primitives

User primitives are declared in a module interface (a .mli file), in the same way as a regular
ML value, except that the declaration is followed by the = sign, the function arity (number of
arguments), and the name of the corresponding C function. For instance, here is how the input

primitive is declared in the interface for the standard library module io:

value input : in_channel -> string -> int -> int -> int

= 4 "input"

Primitives with several arguments are always curried. The C function does not necessarily have
the same name as the ML function.

Values thus declared primitive in a module interface must not be implemented in the module
implementation (the .ml file). They can be used inside the module implementation.

30.1.2 Implementing primitives

User primitives with arity n ≤ 5 are implemented by C functions that take n arguments of type
value, and return a result of type value. The type value is the type of the representations
for Caml Light values. It encodes objects of several base types (integers, floating-point numbers,
strings, . . . ), as well as Caml Light data structures. The type value and the associated conversion
functions and macros are described in details below. For instance, here is the declaration for the C
function implementing the input primitive:
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value input(channel, buffer, offset, length)

value channel, buffer, offset, length;

{

...

}

When the primitive function is applied in a Caml Light program, the C function is called with
the values of the expressions to which the primitive is applied as arguments. The value returned
by the function is passed back to the Caml Light program as the result of the function application.

User primitives with arity greater than 5 are implemented by C functions that receive two
arguments: a pointer to an array of Caml Light values (the values for the arguments), and an
integer which is the number of arguments provided:

value prim_with_lots_of_args(argv, argn)

value * argv;

int argn;

{

... argv[0] ...; /* The first argument */

... argv[6] ...; /* The seventh argument */

}

Implementing a user primitive is actually two separate tasks: on the one hand, decoding the
arguments to extract C values from the given Caml Light values, and encoding the return value as
a Caml Light value; on the other hand, actually computing the result from the arguments. Except
for very simple primitives, it is often preferable to have two distinct C functions to implement
these two tasks. The first function actually implements the primitive, taking native C values as
arguments and returning a native C value. The second function, often called the “stub code”, is a
simple wrapper around the first function that converts its arguments from Caml Light values to C
values, call the first function, and convert the returned C value to Caml Light value. For instance,
here is the stub code for the input primitive:

value input(channel, buffer, offset, length)

value channel, buffer, offset, length;

{

return Val_long(getblock((struct channel *) channel,

&Byte(buffer, Long_val(offset)),

Long_val(length)));

}

(Here, Val_long, Long_val and so on are conversion macros for the type value, that will be
described later.) The hard work is performed by the function getblock, which is declared as:

long getblock(channel, p, n)

struct channel * channel;

char * p;

long n;

{

...

}
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To write C code that operates on Caml Light values, the following include files are provided:

mlvalues.h definition of the value type, and conversion macros
alloc.h allocation functions (to create structured Caml Light objects)
memory.h miscellaneous memory-related functions (for in-place modification of

structures, etc).

These files reside in the Caml Light standard library directory (usually /usr/local/lib/caml-light).

30.1.3 Linking C code with Caml Light code

The Caml Light runtime system comprises three main parts: the bytecode interpreter, the mem-
ory manager, and a set of C functions that implement the primitive operations. Some bytecode
instructions are provided to call these C functions, designated by their offset in a table of functions
(the table of primitives).

In the default mode, the Caml Light linker produces bytecode for the standard runtime system,
with a standard set of primitives. References to primitives that are not in this standard set result
in the “unavailable C primitive” error.

In the “custom runtime” mode, the Caml Light linker scans the bytecode object files (.zo files)
and determines the set of required primitives. Then, it builds a suitable runtime system, by calling
the native code linker with:

• the table of the required primitives

• a library that provides the bytecode interpreter, the memory manager, and the standard
primitives

• libraries and object code files (.o files) mentioned on the command line for the Caml Light
linker, that provide implementations for the user’s primitives.

This builds a runtime system with the required primitives. The Caml Light linker generates byte-
code for this custom runtime system. The bytecode is appended to the end of the custom runtime
system, so that it will be automatically executed when the output file (custom runtime + bytecode)
is launched.

To link in “custom runtime” mode, execute the camlc command with:

• the -custom option

• the names of the desired Caml Light object files (.zo files)

• the names of the C object files and libraries (.o and .a files) that implement the required
primitives. (Libraries can also be specified with the usual -l syntax.)

30.2 The value type

All Caml Light objects are represented by the C type value, defined in the include file mlvalues.h,
along with macros to manipulate values of that type. An object of type value is either:

• an unboxed integer
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• a pointer to a block inside the heap (such as the blocks allocated through one of the alloc_*
functions below)

• a pointer to an object outside the heap (e.g., a pointer to a block allocated by malloc, or to
a C variable).

30.2.1 Integer values

Integer values encode 31-bit signed integers. They are unboxed (unallocated).

30.2.2 Blocks

Blocks in the heap are garbage-collected, and therefore have strict structure constraints. Each
block includes a header containing the size of the block (in words), and the tag of the block. The
tag governs how the contents of the blocks are structured. A tag lower than No_scan_tag indicates
a structured block, containing well-formed values, which is recursively traversed by the garbage
collector. A tag greater than or equal to No_scan_tag indicates a raw block, whose contents are
not scanned by the garbage collector. For the benefits of ad-hoc polymorphic primitives such as
equality and structured input-output, structured and raw blocks are further classified according to
their tags as follows:

Tag Contents of the block

0 to No_scan_tag− 1 A structured block (an array of Caml Light objects). Each
field is a value.

Closure_tag A closure representing a functional value. The first word is
a pointer to a piece of bytecode, the second word is a value

containing the environment.
String_tag A character string.
Double_tag A double-precision floating-point number.
Abstract_tag A block representing an abstract datatype.
Final_tag A block representing an abstract datatype with a “finaliza-

tion” function, to be called when the block is deallocated.

30.2.3 Pointers to outside the heap

Any pointer to outside the heap can be safely cast to and from the type value. This includes
pointers returned by malloc, and pointers to C variables obtained with the & operator.

30.3 Representation of Caml Light data types

This section describes how Caml Light data types are encoded in the value type.

30.3.1 Atomic types

int Unboxed integer values.
char Unboxed integer values (ASCII code).
float Blocks with tag Double_tag.
string Blocks with tag String_tag.
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30.3.2 Product types

Tuples and arrays are represented by pointers to blocks, with tag 0.
Records are also represented by zero-tagged blocks. The ordering of labels in the record type

declaration determines the layout of the record fields: the value associated to the label declared
first is stored in field 0 of the block, the value associated to the label declared next goes in field 1,
and so on.

30.3.3 Concrete types

Constructed terms are represented by blocks whose tag encode the constructor. The constructors for
a given concrete type are numbered from 0 to the number of constructors minus one, following the
order in which they appear in the concrete type declaration. Constant constructors are represented
by zero-sized blocks (atoms), tagged with the constructor number. Non-constant constructors
declared with a n-tuple as argument are represented by a block of size n, tagged with the constructor
number; the n fields contain the components of its tuple argument. Other non-constant constructors
are represented by a block of size 1, tagged with the constructor number; the field 0 contains the
value of the constructor argument. Example:

Constructed term Representation

() Size = 0, tag = 0
false Size = 0, tag = 0
true Size = 0, tag = 1
[] Size = 0, tag = 0
h::t Size = 2, tag = 1, first field = h, second field = t

30.4 Operations on values

30.4.1 Kind tests

• Is_int(v) is true if value v is an immediate integer, false otherwise

• Is_block(v) is true if value v is a pointer to a block, and false if it is an immediate integer.

30.4.2 Operations on integers

• Val_long(l) returns the value encoding the long int l

• Long_val(v) returns the long int encoded in value v

• Val_int(i) returns the value encoding the int i

• Int_val(v) returns the int encoded in value v

30.4.3 Accessing blocks

• Wosize_val(v) returns the size of value v, in words, excluding the header.

• Tag_val(v) returns the tag of value v.
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• Field(v, n) returns the value contained in the nth field of the structured block v. Fields are
numbered from 0 to Wosize_val(v) − 1.

• Code_val(v) returns the code part of the closure v.

• Env_val(v) returns the code part of the closure v.

• string_length(v) returns the length (number of characters) of the string v.

• Byte(v, n) returns the nth character of the string v, with type char. Characters are numbered
from 0 to string_length(v) − 1.

• Byte_u(v, n) returns the nth character of the string v, with type unsigned char. Characters
are numbered from 0 to string_length(v)− 1.

• String_val(v) returns a pointer to the first byte of the string v, with type char *. This
pointer is a valid C string: there is a null character after the last character in the string.
However, Caml Light strings can contain embedded null characters, that will confuse the
usual C functions over strings.

• Double_val(v) returns the floating-point number contained in value v, with type double.

The expressions Field(v, n), Code_val(v), Env_val(v), Byte(v, n), Byte_u(v, n) and Double_val(v)
are valid l-values. Hence, they can be assigned to, resulting in an in-place modification of value v.
Assigning directly to Field(v, n) must be done with care to avoid confusing the garbage collector
(see below).

30.4.4 Allocating blocks

From the standpoint of the allocation functions, blocks are divided according to their size as zero-
sized blocks, small blocks (with size less than or equal to Max_young_size), and large blocks (with
size greater than to Max_young_size). The constant Max_young_size is declared in the include
file mlvalues.h. It is guaranteed to be at least 64 (words), so that any block with constant size less
than or equal to 64 can be assumed to be small. For blocks whose size is computed at run-time,
the size must be compared against Max_young_size to determine the correct allocation procedure.

• Atom(t) returns an “atom” (zero-sized block) with tag t. Zero-sized blocks are preallocated
outside of the heap. It is incorrect to try and allocate a zero-sized block using the functions
below. For instance, Atom(0) represents (), false and []; Atom(1) represents true. (As a
convenience, mlvalues.h defines the macros Val_unit, Val_false and Val_true.)

• alloc(n, t) returns a fresh small block of size n ≤ Max_young_size words, with tag t. If this
block is a structured block (i.e. if t < No_scan_tag), then the fields of the block (initially
containing garbage) must be initialized with legal values (using direct assignment to the fields
of the block) before the next allocation.

• alloc_tuple(n) returns a fresh small block of size n ≤ Max_young_size words, with tag
0. The fields of this block must be filled with legal values before the next allocation or
modification.
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• alloc_shr(n, t) returns a fresh block of size n, with tag t. The size of the block can be
greater than Max_young_size. (It can also be smaller, but in this case it is more efficient to
call alloc instead of alloc_shr.) If this block is a structured block (i.e. if t < No_scan_tag),
then the fields of the block (initially containing garbage) must be initialized with legal values
(using the initialize function described below) before the next allocation.

• alloc_string(n) returns a string value of length n characters. The string initially contains
garbage.

• copy_string(s) returns a string value containing a copy of the null-terminated C string s (a
char *).

• copy_double(d) returns a floating-point value initialized with the double d.

• alloc_array(f, a) allocates an array of values, calling function f over each element of the
input array a to transform it into a value. The array a is an array of pointers terminated
by the null pointer. The function f receives each pointer as argument, and returns a value.
The zero-tagged block returned by alloc_array(f, a) is filled with the values returned by
the successive calls to f .

• copy_string_array(p) allocates an array of strings, copied from the pointer to a string array
p (a char **).

30.4.5 Raising exceptions

C functions cannot raise arbitrary exceptions. However, two functions are provided to raise two
standard exceptions:

• failwith(s), where s is a null-terminated C string (with type char *), raises exception
Failure with argument s.

• invalid_argument(s), where s is a null-terminated C string (with type char *), raises ex-
ception Invalid_argument with argument s.

30.5 Living in harmony with the garbage collector

Unused blocks in the heap are automatically reclaimed by the garbage collector. This requires some
cooperation from C code that manipulates heap-allocated blocks.

Rule 1 After a structured block (a block with tag less than No_scan_tag) is allocated, all fields of
this block must be filled with well-formed values before the next allocation operation. If the block has
been allocated with alloc or alloc_tuple, filling is performed by direct assignment to the fields of
the block:

Field(v, n) = vn;

If the block has been allocated with alloc_shr, filling is performed through the initialize function:

initialize(&Field(v, n), vn);
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The next allocation can trigger a garbage collection. The garbage collector assumes that all
structured blocks contain well-formed values. Newly created blocks contain random data, which
generally do not represent well-formed values.

If you really need to allocate before the fields can receive their final value, first initialize with
a constant value (e.g. Val_long(0)), then allocate, then modify the fields with the correct value
(see rule 3).

Rule 2 Local variables containing values must be registered with the garbage collector (using the
Push_roots and Pop_roots macros), if they are to survive a call to an allocation function.

Registration is performed with the Push_roots and Pop_roots macros. Push_roots(r, n) de-
clares an array r of n values and registers them with the garbage collector. The values contained
in r[0] to r[n − 1] are treated like roots by the garbage collector. A root value has the following
properties: if it points to a heap-allocated block, this block (and its contents) will not be reclaimed;
moreover, if this block is relocated by the garbage collector, the root value is updated to point to the
new location for the block. Push_roots(r, n) must occur in a C block exactly between the last local
variable declaration and the first statement in the block. To un-register the roots, Pop_roots()
must be called before the C block containing Push_roots(r, n) is exited. (Roots are automatically
un-registered if a Caml exception is raised.)

Rule 3 Direct assignment to a field of a block, as in

Field(v, n) = v′;

is safe only if v is a block newly allocated by alloc or alloc_tuple; that is, if no allocation took
place between the allocation of v and the assignment to the field. In all other cases, never assign
directly. If the block has just been allocated by alloc_shr, use initialize to assign a value to a
field for the first time:

initialize(&Field(v, n), v′);

Otherwise, you are updating a field that previously contained a well-formed value; then, call the
modify function:

modify(&Field(v, n), v′);

To illustrate the rules above, here is a C function that builds and returns a list containing the
two integers given as parameters:

value alloc_list_int(i1, i2)

int i1, i2;

{

value result;

Push_roots(r, 1);

r[0] = alloc(2, 1); /* Allocate a cons cell */

Field(r[0], 0) = Val_int(i2); /* car = the integer i2 */

Field(r[0], 1) = Atom(0); /* cdr = the empty list [] */

result = alloc(2, 1); /* Allocate the other cons cell */

Field(result, 0) = Val_int(i1); /* car = the integer i1 */
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Field(result, 1) = r[0]; /* cdr = the first cons cell */

Pop_roots();

return result;

}

The “cons” cell allocated first needs to survive the allocation of the other cons cell; hence, the value
returned by the first call to alloc must be stored in a registered root. The value returned by the
second call to alloc can reside in the un-registered local variable result, since we won’t do any
further allocation in this function.

In the example above, the list is built bottom-up. Here is an alternate way, that proceeds
top-down. It is less efficient, but illustrates the use of modify.

value alloc_list_int(i1, i2)

int i1, i2;

{

value tail;

Push_roots(r, 1);

r[0] = alloc(2, 1); /* Allocate a cons cell */

Field(r[0], 0) = Val_int(i1); /* car = the integer i1 */

Field(r[0], 1) = Val_int(0); /* A dummy value

tail = alloc(2, 1); /* Allocate the other cons cell */

Field(tail, 0) = Val_int(i2); /* car = the integer i2 */

Field(tail, 1) = Atom(0); /* cdr = the empty list [] */

modify(&Field(r[0], 1), tail); /* cdr of the result = tail */

Pop_roots();

return r[0];

}

It would be incorrect to perform Field(r[0], 1) = tail directly, because the allocation of tail
has taken place since r[0] was allocated.

30.6 A complete example

This section outlines how the functions from the Unix curses library can be made available to Caml
Light programs. First of all, here is the interface curses.mli that declares the curses primitives
and data types:

type window;; (* The type "window" remains abstract *)

value initscr: unit -> window = 1 "curses_initscr"

and endwin: unit -> unit = 1 "curses_endwin"

and refresh: unit -> unit = 1 "curses_refresh"

and wrefresh : window -> unit = 1 "curses_wrefresh"

and newwin: int -> int -> int -> int -> window = 4 "curses_newwin"

and mvwin: window -> int -> int -> unit = 3 "curses_mvwin"

and addch: char -> unit = 1 "curses_addch"

and mvwaddch: window -> int -> int -> char -> unit = 4 "curses_mvwaddch"
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and addstr: string -> unit = 1 "curses_addstr"

and mvwaddstr: window -> int -> int -> string -> unit = 4 "curses_mvwaddstr"

;; (* lots more omitted *)

To compile this interface:

camlc -c curses.mli

To implement these functions, we just have to provide the stub code; the core functions are
already implemented in the curses library. The stub code file, curses.o, looks like:

#include <curses.h>

#include <mlvalues.h>

value curses_initscr(unit)

value unit;

{

return (value) initscr(); /* OK to coerce directly from WINDOW * to value

since that’s a block created by malloc() */

}

value curses_wrefresh(win)

value win;

{

wrefresh((value) win);

return Val_unit; /* Or Atom(0) */

}

value curses_newwin(nlines, ncols, x0, y0)

value nlines, ncols, x0, y0;

{

return (value) newwin(Int_val(nlines), Int_val(ncols),

Int_val(x0), Int_val(y0));

}

value curses_addch(c)

value c;

{

addch(Int_val(c)); /* Characters are encoded like integers */

return Val_unit;

}

value curses_addstr(s)

value s;

{

addstr(String_val(s));

return Val_unit;



Chapter 30. Interfacing C with Caml Light 275

}

/* This goes on for pages. */

(Actually, it would be better to create a library for the stub code, with each stub code function
in a separate file, so that linking would pick only those functions from the curses library that are
actually used.)

The file curses.c can be compiled with:

cc -c -I/usr/local/lib/caml-light curses.c

or, even simpler,

camlc -c curses.c

(When passed a .c file, the camlc command simply calls cc on that file, with the right -I option.)
Now, here is a sample Caml Light program test.ml that uses the curses module:

#open "curses";;

let main_window = initscr () in

let small_window = newwin 10 5 20 10 in

mvwaddstr main_window 10 2 "Hello";

mvwaddstr small_window 4 3 "world";

refresh();

for i = 1 to 100000 do () done;

endwin()

;;

To compile this program, run:

camlc -c test.ml

Finally, to link everything together:

camlc -custom -o test test.zo curses.o -lcurses
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Chapter 31

Further reading

For the interested reader, we list below some references to books and reports related (sometimes
loosely) to Caml Light.

31.1 Programming in ML

The books below are programming courses taught in ML. Their main goal is to teach programming,
not to describe ML in full details — though most contain fairly good introductions to the ML
language. Most of those books use the Standard ML dialect instead of the Caml dialect, so you
will have to keep in mind the differences in syntax and in semantics.

• Lawrence C. Paulson. ML for the working programmer. Cambridge University Press, 1991.

An excellent introduction to programming in Standard ML. Develops a theorem prover as a
complete example. Contains a presentation of the module system of Standard ML.

• Chris Reade. Elements of Functional Programming. Addison-Wesley, 1989.

An introduction to Standard ML, with sections on denotational semantics and lambda-
calculus.

• Ryan Stansifer. ML primer. Prentice-Hall, 1992.

A short, but nice introduction to programming in Standard ML.

• Thérèse Accart Hardin and Véronique Donzeau-Gouge Viguié. Concepts et outils pour la
programmation. Du fonctionnel à l’impératif avec CAML et ADA. Interéditions, 1992.

A first course in programming, that first introduces the main programming notions in Caml,
then shows them underlying Ada. Intended for beginners; slow-paced for the others.

• Ake Wikstrom. Functional programming using Standard ML. Prentice-Hall, 1987.

A first course in programming, taught in Standard ML. Intended for absolute beginners;
slow-paced for the others.

• Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Computer Pro-
grams. The MIT press, 1985. (French translation: Structure et interprétation des programmes
informatiques, Interéditions, 1989.)
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An outstanding course on programming, taught in Scheme, the modern dialect of Lisp. Well
worth reading, even if you are more interested in ML than in Lisp.

31.2 Descriptions of ML dialects

The books and reports below are descriptions of various programming languages from the ML
family. They assume some familiarity with ML.

• Robert Harper. Introduction to Standard ML. Technical report ECS-LFCS-86-14, University
of Edinburgh, 1986.

An overview of Standard ML, including the module system. Terse, but still readable.

• Robin Milner, Mads Tofte and Robert Harper. The definition of Standard ML. The MIT
press, 1990.

A complete formal definition of Standard ML, in the framework of structured operational se-
mantics. This book is probably the most mathematically precise definition of a programming
language ever written. It is heavy on formalism and horribly terse, so even readers that are
thoroughly familiar with ML will have major difficulties with it.

• Robin Milner and Mads Tofte. Commentary on Standard ML. The MIT Press, 1991.

A commentary on the book above, that attempts to explain the most delicate parts and
motivate the design choices. Easier to read than the Definition, but still rather involving.

• Guy Cousineau and Gérard Huet. The CAML primer. Technical report 122, INRIA, 1990.

A short description of the original Caml system, from which Caml Light has evolved. Some
familiarity with Lisp is assumed.

• Pierre Weis et al. The CAML reference manual, version 2.6.1. Technical report 121, INRIA,
1990.

The manual for the original Caml system, from which Caml Light has evolved.

• Michael J. Gordon, Arthur J. Milner and Christopher P. Wadsworth. Edinburgh LCF. Lecture
Notes in Computer Science volume 78, Springer-Verlag, 1979.

This is the first published description of the ML language, at the time when it was nothing
more than the control language for the LCF system, a theorem prover. This book is now
obsolete, since the ML language has much evolved since then; but it is still of historical
interest.

• Paul Hudak, Simon Peyton-Jones and Philip Wadler. Report on the programming language
Haskell, version 1.1. Technical report, Yale University, 1991.

Haskell is a purely functional language with lazy semantics that shares many important
points with ML (full functionality, polymorphic typing), but has interesting features of its
own (dynamic overloading, also called type classes).
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31.3 Implementing functional programming languages

The references below are intended for those who are curious to learn how a language like
Caml Light is compiled and implemented.

• Xavier Leroy. The ZINC experiment: an economical implementation of the ML language.
Technical report 117, INRIA, 1990.

A description of the ZINC implementation, the prototype ML implementation that has
evolved into Caml Light. Large parts of this report still apply to the current Caml Light
system, in particular the description of the execution model and abstract machine. Other
parts are now obsolete. Yet this report still gives a complete overview of the implementation
techniques used in Caml Light.

• Simon Peyton-Jones. The implementation of functional programming languages. Prentice-
Hall, 1987. (French translation: Mise en œuvre des langages fonctionnels de programmation,
Masson, 1990.)

An excellent description of the implementation of purely functional languages with lazy se-
mantics, using the technique known as graph reduction. The part of the book that deals with
the transformation from ML to enriched lambda-calculus directly applies to Caml Light. You
will find a good description of how pattern-matching is compiled and how types are inferred.
The remainder of the book does not apply directly to Caml Light, since Caml Light is not
purely functional (it has side-effects), has strict semantics, and does not use graph reduction
at all.

• Andrew W. Appel. Compiling with continuations. Cambridge University Press, 1992.

A complete description of an optimizing compiler for Standard ML, based on an intermediate
representation called continuation-passing style. Shows how many advanced program opti-
mizations can be applied to ML. Not directly relevant to the Caml Light system, since Caml
Light does not use continuation-passing style at all, and makes little attempts at optimizing
programs.
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! (infix), 202

!= (infix), 188

* (infix), 190, 192

*. (infix), 190

+ (infix), 190, 192

+. (infix), 190

- (infix), 190, 192

-. (infix), 190

/ (infix), 190, 192

/. (infix), 190
< (infix), 191, 193

<. (infix), 191

<= (infix), 191, 193

<=. (infix), 191

<> (infix), 188

<>. (infix), 190

= (infix), 188

=. (infix), 190

== (infix), 188

> (infix), 191, 193

>. (infix), 191
>= (infix), 191, 193

>=. (infix), 191

@ (infix), 199

^ (infix), 204

abs, 193
abs_float, 191

acos, 191

add, 211, 215

add_float, 190

add_int, 192

arg (module), 209

asin, 191

asr (infix), 194

assoc, 201

assq, 201

atan, 191

atan2, 191

Bad (exception), 210

basename, 211

black, 224

blit_image, 226

blit_string, 204

blit_vect, 206

blue, 224

bool (module), 187

Break (exception), 219

button_down, 227

catch_break, 219

cd, 246

char (module), 188

char_for_read, 188

char_of_int, 188

chdir, 219

check_suffix, 210

chop_suffix, 211

clear, 211, 215, 217

clear_graph, 223

clear_parser, 214

close, 218

close_graph, 223

close_in, 199

close_out, 197

combine, 202

command_line, 217

compare_strings, 205

concat, 210

concat_vect, 206

cos, 191

create_image, 226

create_lexer, 213
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create_lexer_channel, 212
create_lexer_string, 213
create_string, 204
current_dir_name, 210
current_point, 224

cyan, 224

decr, 202

dirname, 211
div_float, 190
div_int, 192
Division_by_zero (exception), 192
do_list, 200

do_list2, 200
do_list_combine, 202
do_stream, 203
do_table, 212
do_vect, 207

draw_arc, 224
draw_char, 225
draw_circle, 224
draw_ellipse, 224
draw_image, 226
draw_string, 225

dump_image, 226

Empty (exception), 215, 216
End_of_file (exception), 194
end_of_stream, 203
eq (module), 188
eq_float, 190
eq_int, 193

eq_string, 205
exc (module), 189
except, 201
exceptq, 201
exists, 201

exit, 194, 218
Exit (exception), 189
exp, 191

Failure (exception), 189
failwith, 189
fchar (module), 189
filename (module), 210

fill_arc, 225

fill_circle, 225
fill_ellipse, 225
fill_poly, 225
fill_rect, 225
fill_string, 204

fill_vect, 206
find, 211
find_all, 211
flat_map, 200
float, 216

float (module), 190
float_of_int, 190
float_of_string, 191
flush, 196
for_all, 201
fprint, 215

fprintf, 214
fst, 202
fstring (module), 191
fvect (module), 192

gc, 246
ge_float, 191
ge_int, 193

ge_string, 205
get_image, 226
get_lexeme, 213
get_lexeme_char, 213
get_lexeme_end, 213

get_lexeme_start, 213
getenv, 219
Graphic_failure (exception), 223
graphics (module), 223
green, 224

gt_float, 191
gt_int, 193
gt_string, 205

hash, 212
hash_param, 212
hashtbl (module), 211
hd, 199

in_channel_length, 199
include, 245

incr, 202
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index, 201
init, 216
input, 198
input_binary_int, 199
input_byte, 199
input_char, 198
input_line, 198
input_value, 199
int, 216
int (module), 192
int_of_char, 188
int_of_float, 190
int_of_string, 194
intersect, 201
invalid_arg, 189
Invalid_argument (exception), 189
io (module), 194
is_absolute, 210
it_list, 200
it_list2, 200
iter, 216, 217

key_pressed, 227

land (infix), 193
le_float, 191
le_int, 193
le_string, 205
length, 216, 217
lexing (module), 212
lineto, 224
list (module), 199
list_it, 200
list_it2, 200
list_length, 199
list_of_vect, 206
load, 245
load_object, 245
log, 191
lor (infix), 193
lshift_left, 193
lshift_right, 194
lsl (infix), 193
lsr (infix), 194
lt_float, 191
lt_int, 193

lt_string, 205
lxor (infix), 193

magenta, 224
make_image, 226
make_matrix, 206
make_string, 204
make_vect, 206

map, 200
map2, 200
map_combine, 202
map_vect, 206
map_vect_list, 207

Match_failure (exception), 175–177
max, 193
mem, 201
mem_assoc, 201
memq, 201

merge, 216
min, 193
minus, 190, 192
minus_float, 190
minus_int, 192
mod (infix), 192

mouse_pos, 227
moveto, 224
mult_float, 190
mult_int, 192

neq_float, 190
neq_int, 193
neq_string, 205

new, 211, 215, 217
not (infix), 188
Not_found (exception), 189
nth_char, 204

open, 218
open_descriptor_in, 198
open_descriptor_out, 196

open_graph, 223
open_in, 198
open_in_bin, 198
open_in_gen, 198
open_out, 196

open_out_bin, 196
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open_out_gen, 196
out_channel_length, 197
Out_of_memory (exception), 189
output, 197
output_binary_int, 197

output_byte, 197
output_char, 197
output_string, 197
output_value, 197

pair (module), 202
parse, 210
Parse_error (exception), 203

Parse_failure (exception), 203
parsing (module), 213
peek, 215
plot, 224
point_color, 224

pop, 217
pos_in, 199
pos_out, 197
power, 191
pred, 192
prerr_char, 195

prerr_endline, 195
prerr_float, 195
prerr_int, 195
prerr_string, 195
print, 215

print_char, 195
print_endline, 195
print_float, 195
print_int, 195
print_newline, 195

print_string, 195
printexc (module), 214
printf, 215
printf (module), 214
push, 217

queue (module), 215
quit, 245

raise, 189
random (module), 216

read_float, 196

read_int, 196

read_key, 227

read_line, 196

really_input, 198

red, 224

ref (module), 202

remove, 211, 218

rename, 218

replace_string, 205

rev, 200

rgb, 223

s_irall, 218

s_irgrp, 218

s_iroth, 218

s_irusr, 218

s_isgid, 218

s_isuid, 218

s_iwall, 218

s_iwgrp, 218

s_iwoth, 218

s_iwusr, 218

s_ixall, 218

s_ixgrp, 218

s_ixoth, 218

s_ixusr, 218

seek_in, 199

seek_out, 197

set_color, 224

set_font, 225

set_line_width, 224

set_nth_char, 204

set_text_size, 225

sin, 191

size_x, 223

size_y, 223

snd, 202

sort, 216

sort (module), 216

sound, 227

split, 202

sqrt, 191

stack (module), 216

std_err, 194

std_in, 194
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std_out, 194
stderr, 194
stdin, 194
stdout, 194
stream (module), 203
stream_check, 203
stream_from, 203
stream_get, 203
stream_next, 203
stream_of_channel, 203
stream_of_string, 203
string (module), 204
string_for_read, 205
string_length, 204
string_of_float, 191
string_of_int, 194
sub_float, 190
sub_int, 192
sub_string, 204
sub_vect, 206
subtract, 201
succ, 192
symbol_end, 213
symbol_start, 213
sys (module), 217
Sys_error (exception), 217

take, 215
tan, 191
text_size, 225
tl, 200
trace, 245
transp, 226

union, 201
untrace, 246

vect (module), 205
vect_assign, 205
vect_item, 205
vect_length, 205
vect_of_list, 206

wait_next_event, 227
white, 224

yellow, 224
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and, see let, type, exception, value
as, 68, 170, 171

begin, 71, 173, 174

do, see while, for
done, see while, for
downto, see for

else, see if

end, 71, 173, 174
exception, 73, see also 189, 182, 183

for, 70, 173, 177
fun, 173
function, 32, 48, 173

if, 41, 43, 173, 176
in, see let

let, 36, 173, 175

match, 61, 173, 177
mutable, 67, 181, 182

not, 44, 173

of, see type, exception
or, 44, 173, 177

prefix, 39, 173, 179

rec, see let

then, see if

to, see for

try, 74, 173, 178
type, 55, 58, 60, 181, 183

value, 183

while, 70, 177
with, see match, try
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